
City LinUX - Systems Admin 101
Revision: 2.3

Clifford W Fulford

City LinUX

ABSTRACT

An introduction to the history, philosophy, principles and practice of systems adminis-
tration in Linux and Linux/Windows environments with particular reference to the Ubuntu
distribution of Linux.

For assistance and additional training courses call Clifford W Fulford on 0709 229 5385

This page is intentionally left blank.

Page 2

City LinUX Systems Admin’s Introduction to Linux SA101

Course written and presented by:

Clifford W Fulford
BA(Hons), PGCE, PGDip (Computing)
Regd. DES No. 77/73034

Fulford Consulting Ltd
t/aCity LinUX ®
162 Edward Road
West Bridgford
Nottingham NG2 5GF

E-mail: fulford@fulford.net, fulford@citylinux.com
Personal number:0709 229 5385
Mobile: 0793 572 8612
Free phone:0800 024 8425

Websites: www.citylinux.com, www.fulford.net
Copyright © 2012 Clifford W Fulford

Information on additional training courses may be found at the
end of this manual.

Page 3

City LinUX Systems Admin’s Introduction to Linux SA101

Page 4

City LinUX The Systems Admin’s Introduction to Linux SA101

Table of Contents

Getting help. 7
Linux architecture. 11
Linux platforms. 15
Linux history. . .17
Some Linux distributions. 21
Commands, arguments & options. 25
The UNIX philosophy. 29
The Linux shell. 31
Shell programming.. 35
The UNIX / Linux inode. 43
Shell programming 2. 47
Linux editors. 51
Using vi. 53
Unix / Linux file store. 55
Shell programming 3. 65
File system management.. 71
Linux process control. 79
Network configuration.. 89
User accounts. 93
Hostnames & hostname resolution.. 99
File sharing in Linux. 103
Scheduling work with cron. 105
Change control. 109
Internet mail. 113
Internet web servers. 117
Some Linux applications.. 119
Further courses.. 121

Page 5

This page is intentionally left blank.

Page 6

City Linux The Systems Admin’s Introduction to Linux (S1) Getting help

Section 1.
Getting Help.

"The Linux philosophy is ’laugh in the face of danger’. Oops. Wrong one. ’Do it yourself’.
That’s it."

Linus Torvald 1996.

Page 7

(S1) Getting help The Systems Admin’s Introduction to Linux City LinUX

1. Gettinghelp.

The main options for obtaining help are theman pages,infotext, built in command help and web pages.

1.1. Tools:

man, info, apropos, whereis, whatis.

bash-4.2$ man -f man

man [] (1) - format and display the on-line manual pages

man [] (7) - pages - conventions for writing Linux man pages

man.conf [] (5) - configuration data for man

man [] (1) - format and display the on-line manual pages

man [] (7) - pages - conventions for writing Linux man pages

man.conf [] (5) - configuration data for man

man [] (1) - format and display the on-line manual pages

man [] (7) - macros to format man pages

man [] (7) - pages - conventions for writing Linux man pages

man.conf [] (5) - configuration data for man

bash-4.2$ man man

man 1 September 19, 2005

NAME man − format and display the on-line manual pages

SYNOPSIS manname ...

DESCRIPTION man formats and displays the on-line manual pages. If you specifysection, man looks only
in that section of the manual.nameis normally the name of the manual page, which is typically the name of a
command, function, or file.However, if namecontains a slash thenman interprets it as a file specification, so
that you can doman ./foo.5or even man /cd/foo/bar.1.gz.

See below for a description of whereman looks for the manual page files.

MANUAL SECTIONS The standard sections of the manual include:

1 User Commands

2 System Calls

3 C Library Functions

4 Devices and Special Files

5 File Formats and Conventions

6 Games et. Al.

7 Miscellanea

8 System Administration tools and Daemons

Distributors customise the manual section to their specifics, which often include additional sections.

OPTIONS

−C config_file Specify the configuration file to use; the default may be based)/usr/lib/man.conf(Debian
/etc/man.config(Red Hat, CentOS et al) or/usr/lib64/man.conf (Slackware).
(Seeman.conf (5).)

−M path Specify the list of directories to search for man pages. Separate the directories with colons.An
empty list is the same as not specifying−M at all. SeeSEARCH PATH FOR MANUAL P AGES.

−P pager Specify which pager to use. This option overrides theMANPAGER environment variable,
which in turn overrides thePA GER variable. Bydefault,man uses/usr/bin/less -is.

−B Specify which browser to use on HTML files.This option overrides theBROWSER environment
variable. By default,man uses/usr/bin/lynx ,

−H Specify a command that renders HTML files as text. Thisoption overrides theHTMLP AGER envi-
ronment variable. By default,man uses/usr/bin/lynx -dump.
Linux Man pages - Frederico Lucifredi et al. (truncated and edited)

Page 8

City Linux The Systems Admin’s Introduction to Linux (S1) Getting help

Every systems administrator should be able to write simple man pages in support of their administration tools.
See the chapter onnroff andtroff to learn more on how to do this.

1.2. Built in help.

Many commands have some built in help text. Using commands with the options "-h", "--help" or "-?" will often
produce limited help.

1.3. Web pages

There is extensive help available on the web. Search on any Linux command and you will almost certainly find a
wealth of material on line including theman pages. The Ubuntu web pages have been, for the most part, quite
beautifully prepared for use in a web browser. If you have internet access and a web browser available using
"ubunto man <command name>" will bring forth the man pages in a form much more readily navigated than
that managed in a terminal window.

1.4. Exercises.

Try the following:

sa101$ man -f man
sa101$ man apropos
sa101$ apropos man
sa101$ info
sa101$ info info
sa101$ info man
sa101$ whatis man
sa101$ whereis man
sa101$ man whereis
sa101$ whereis -m man
sa101$ man passwd
sa101$ man 5 passwd
sa101$ man useradd

Try using "man info" in a search engine.

Who is the current maintainer of "man"?

What does the -P option allow you to do?

Examine theman.conffile.

Experiment with the tools listed in the table below.

1.5. Tools:

Commands
whoami printeffective user id (also works as "who am i")
last printlist of logins from current wtmp file
finger lookupuser information
man printthe manual page
info readthe info documents
apropos searchthe "whatis" database
whatis searchthe "whatis" database
whereis locatethe binary, source and manual page for a command

Page 9

(S1) Getting help The Systems Admin’s Introduction to Linux City LinUX

Page 10

City Linux The Systems Admin’s Introduction to Linux (S2) Linux Architecture

Section 2.
Architecture .

"..of course, Linus didn’t sit down in a vacuum and suddenly type in the Linux source code.... He
had my book.... But the code was his. The proof of this is that he messed the design up."

Andrew Tanenbaum.

Page 11

(S2) Linux Architecture The Systems Admin’s Introduction to Linux City Linux

2. Linux architecture.

The Linux kernel includes true multitasking, virtual memory, shared libraries, sharedcopy on writeexecutables,
memory management and TCP/IP networking.

2.1. Thekernel.

When I first began studying UNIX the proud boast was that the kernel consisted of around 10,000 lines of C
code and the hardware code represented around 1000 lines of assembler. It was this compact size and the use of
a high level language that gav eUNIX its flexibility . By making the necessary changes to the hardware code in
assembler, UNIX could be relatively easily recompiled for very different hardware platforms.

Linux has, in common with many other operating systems and software applications, undergone substantial code
bloat.

In 2011 the Linux Foundation kernel development study put the number of files used in building the kernel at
37,000, with 17 million lines of code.

Fortunately, although the kernel remains monolithic, unlike many other operating systems, you don’t need to
keep it all. Many of the kernel virtual devices are in the form of loadable modules, which can either be loaded at
boot time or later, on demand. In addition, it is a relatively simple task, to rebuild the kernel using only those
static modules that are actually needed in your system. The kernel can be slimmed down substantially with sig-
nificant performance gains.

The kernel runs in a highly privileged mode and supervises the privileges of all other processes.

Prior to kernel 2.2 there was a simple bifurcation between processes that ran with the effective user id 0 and
which were then privileged and those processes which ran with a non zero id and were therefore unprivileged.

Starting with kernel 2.2 Linux divides privileges formerly associated with the superusers into units known as
capabilitieswhich can be enabled and disabled independently.

It is the flexibility of the kernel that allows it to be modified for such a large range of devices.

Other application programs

bash
who

date

wc

grep

ed

vi

cd

sed

awk

X

find

cutflex
ld

as

cpp

bison

flex

less

ksh

csh

tcsh

zsh

cc/gcc

Hardware

Kernel

Figure 1 -UNIX/Linux Architecture

Page 12

City Linux The Systems Admin’s Introduction to Linux (S2) Linux Architecture

User programs

libraries
User Level

Kernel Level

system call interface

File subsystem

buffer cache

process
control

subsystem

inter-process
communications

scheduler

memory
management

character block

Device drivers

hardware control

Kernel Level

Hardware Level

hardware

Figure 2 -System Kernel

2.2. Userprograms.

Most users’ contact with what they think of as the OS, is confined to the the huge raft of software tools that
come as standard with most distributions of UNIX and Linux.

These software tools (and other applications) communicate with the kernel through thesystem call interface.
Many of them were written before Linus wrote the Linux kernel and were intended to be part of the GNU Hurd
operating system.

Page 13

(S2) Linux Architecture The Systems Admin’s Introduction to Linux City Linux

2.3. Exercises.

Andrew Tanenbaum believes that Linus made fundamental errors in his design of Linux. Do some on-line
research and discover the key arguments over the differences between Minix and Linux architecture.

Study the commands in the table of tools below. Experiment with using each of them on the command line and
read the associatedman pages.

2.4. Tools:

Commands
ls list files
cat concatenatefiles
mv move or rename files
cp copy files
rm remove files
grep getregular expression
chmod changemode (file permissions)
diff report the difference between 2 text files
find findfiles in directory tree
clear clearscreen
ed edita file

uname -a print system information
arch printmachine architecture
whoami printeffective user id (also works as "who am i")
last printlist of logins from current wtmp file
finger lookupuser information
man printthe manual pages
info print the info documents
apropos searchthe whatis database

Page 14

City Linux The Systems Admin’s Introduction to Linux (S3) Linux platforms

Section 3.
Linux Platforms .

"Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT portable (uses 386 task
switching etc), and it probably never will support anything other than AT-harddisks, as that’s all I
have :-(."

Linus Torvald - August 1991.

Page 15

(S3) Linux platforms The Systems Admin’s Introduction to Linux City LinUX

3. Linux platforms.

3.1. Servers, mainframes and supercomputers.

"Linux distributions have long been used as server operating systems, and have risen to prominence in that
area; Netcraft reported in September 2006 that eight of the ten most reliable internet hosting companies
ran Linux distributions on their web servers. Since June 2008, Linux distributions represented five of the
top ten, FreeBSD three of ten, and Microsoft two of ten; since February 2010, Linux distributions repre-
sented six of the top ten, FreeBSD two of ten, and Microsoft one of ten.

Linux distributions are the cornerstone of the LAMP server-software combination (Linux, Apache,
MySQL, Perl/PHP/Python) which has achieved popularity among developers, and which is one of the
more common platforms for website hosting.

Linux distributions have become increasingly popular on mainframes in the last decade partly due to pric-
ing and the open-source model. In December 2009, computer giant IBM reported that it would predomi-
nantly market and sell mainframe-based Enterprise Linux Server.

Linux distributions are also commonly used as operating systems for supercomputers: since November
2010, out of the top 500 systems, 459 (91.8%) run a Linux distribution. Linux was also selected as the
operating system for the world’s most powerful supercomputer, IBM’s Sequoia which was scheduled to
become operational in 2011."Wikipedia 12/11/2012

3.2. Android Smartphones and tablets.

"Android is a Linux-based operating system designed primarily for touchscreen mobile devices such as
smartphones and tablet computers. It is currently developed by Google in conjunction with the Open
Handset Alliance. Initially developed by Android Inc, whom Google financially backed and then pur-
chased in 2005, Android was unveiled in 2007. The founding of the Open Handset Alliance, a consortium
of 86 hardware, software, and telecommunication companies devoted to advancing open standards for
mobile devices, was announced at the same time."Wikipedia 12/11/2012

3.3. Android Market share and rate of adoption.

"Research company Canalys estimated in the second quarter of 2009 that Android had a 2.8% share of
worldwide smartphone shipments. By the fourth quarter of 2010 this had grown to 33% of the market,
becoming the top-selling smartphone platform. By the third quarter of 2011 Gartner estimated that more
than half (52.5%) of the smartphone market belongs to Android. By the third quarter of 2012 Android had
a 75% share of the global smartphone market according to the research firm IDC.

In July 2011, Google said that 550,000 new Android devices were being activated every day, up from
400,000 per day in May, and more than 100 million devices had been activated with 4.4% growth per
week. In September 2012, 500 million devices had been activated with 1.3 million activations per day.

Android’s ability to garner a considerable market share has been credited partly to Google’s strategy of
readily licensing Android to manufacturers of low-end devices."

3.4. Apple’s OS X

"OS X, originally Mac OS X, is a series of Unix-based graphical interface operating systems developed,
marketed, and sold by Apple Inc. It is designed to run exclusively on Mac computers, having been pre-
loaded on all Macs since 2002. It was the successor to Mac OS 9, released in 1999, the final release of the
"classic" Mac OS, which had been Apple’s primary operating system since 1984. The first version
released was Mac OS X Server 1.0 in 1999, and a desktop version, Mac OS X v10.0 "Cheetah" followed
on March 24, 2001.

3.5. What is UNIX?

If it walks like a duck

3.6. What is Linux?

See above.

Page 16

City Linux The Systems Admin’s Introduction to Linux (S4) Linux history

Section 4.
Linux history.

"One of the main advantages of Unix over, say, MVS, is the tremendous number of features Unix
lacks."

Chris Torek.

Page 17

(S4) Linux history The Systems Admin’s Introduction to Linux-4 City LinUX

4. Linux history.

4.1. Ashort history of UNIX.

"In the late 1960’s Ken Thompsom joined the computing-science research group at Bell Laboratories, which is
the research arm of the giant American corporation ATT. He and many colleagues had been collaborating with
MIT and GE on the development of an operating system called Multics which aimed to improve the perfor-
mance of multi-user time-sharing computer systems. But the resultant system was too big and too slow, so Bell
lab’s withdrew leaving the computing science group without a computer.

A cast-off PDP-7 computer became available, so that Thompsom set about rewriting a planetary motion simula-
tion program previously implemented on the GE system. At the same time he experimented with many of the
concepts used for Multics, working in PDP-7 assembler he developed a hierarchical filestore, a number of utility
programs and central supervisory program (known as the kernel) which together made up a rudimentary single-
user operating system. He called it UNIX, a poor pun on uni-MULTICS i.e. single-user MULTICS or was it a
pun on eunuch version of MULTICS ?

Thompson’s system found favour with his colleagues in the Bell labs computer science department because it
made software development work easier. Some text and processing utilities were added to the system, which
were used by the legal department and earned the developers enough funds to obtain a PDP-11 a more reliable
and modern system. The 16-bit PDP-11 became the second UNIX port, and enabled multi-user facilities because
of the memory management hardware.

One of Thompson’s colleagues was Dennis Ritchie who had been impressed with the BCPL language developed
at the University of Cambridge, which he used as a template for a language he designed called B. This language
developed into C which begged the question what would the next language be called would it be D ?, or would it
be P?. The answer we now know is C++.

The language C was then used to completely rewrite UNIX apart from a few hundred lines of assembler code.
This enabled the first port of UNIX onto a non-DEC computer, a 32-bit INTERDAT A 8/32 minicomputer sys-
tem (with a similar architecture to the IBM 370) and highlighted some of the more non-portable aspects of the
system

The combination of an environment designed for program development and the use of high-level language to
code systems software greatly enhanced the possibility of a single programmer understanding the workings of a
multi-user multiprogramming system. Thus UNIX flourished within BELL labs and they made public Version 6
which ran on the PDP-11 range and was licensed to universities without any support, but with all the source
code for the media cost. Commercial organisations could obtain UNIX for about 20,000 pounds. Surprisingly
some did!. Version 6 was still small enough to appear on micro-processor systems (e.g. Z80, Motorola 6809,
Intel 8085 etc...) as well as a variety of mini and main-frame systems. Other companies like Whitesmiths con-
solidated around V6 (IDRIS) because of its small size made it suitable for smaller real-time control applications,
whilst others like Motorola opted for choosing the best ideas (OS9) but not attempting UNIX compatibility.

By Version 7 UNIX had developed and matured into a relatively bug-free product which ran on many different
types of processor.
Taken from "A Short History of UNIX" by Liam Madden.

For the full text see
http://www.unix.com/unix-dummies-questions-answers/7-short-history-unix-l-madden-ic-ac-uk.html

4.2. 1991Freax.

Linux was developed by Linus Torvald when a student at Helsinki University in 1991. Linus was frustrated by
the lack of a complete operating system kernel with which he could work while a student. The development of a
free / open source version of BSD was bogged down in the American courts, the GNU Hurd project had been
running for several years but it seemed unlikely to be completed any time soon (and still doesn’t), Andrew
Tanenbaum’s Minix was incomplete and at the time, sold only under a restrictive licence.

Linus initially called his kernelFreax a portmanteau word created fromfree, freak andUnix.

In 1992 Linus switched from his own restrictive licence to releasing Linux under the GNU General Public
Licence (GPL) developed by Richard Stallman of the Free Software Foundation. This change of licencing facili-
tated the growth of Linux into the world wide phenomenon that it is today.

Page 18

City Linux The Systems Admin’s Introduction to Linux (S4) Linux history

Figure 3 -UNIX/Linux time line .

4.3. Exercises.

Research the pronunciation of "Linux" on line. Check out how Linux is pronounced by Linus Torvald.

Page 19

(S4) Linux history The Systems Admin’s Introduction to Linux-4 City LinUX

Page 20

City LinUX The Systems Admin’s Introduction to Linux (S5) Linux distributions

Section 5.
Linux distributions .

"Slackware was great in that it did the one thing I want my distro to do more than anything, and
that’s stay the hell out of my way... Gentoo basically stays the hell out of your way... and Portage
goes a long way to basically do exactly what you’d hav edone on Slackware without having to do it
manually... maybe I’m getting greedy in my old age, but I don’t want to compile my packages any-
more."

An Interview with Ryan C. Gordon. - Michael Larabel - Phoronix 2003.

Page 21

(S5) Linux distributions TheSystems Admin’s Introduction to Linux City LinUX

5. SomeLinux distributions.

5.1. Slackware - Patrick Volkerding.

Created Slackware Linux, Inc 1993. Designed for stability and simplicity, the most "Unix like" Linux
Distribution.

5.2. RedHat - Mark Ewing.

Red Hat Enterprise Linux. Started by Bob Young and Mark Ewing in 1995. (Mark Ewing had created the
Red Hat Linux distribution around 1993. Aimed at corporates who want the security of paying for 24 hour
support contracts. The binaries are no longer freely distributed but the source code is and is used in other
distributions.

5.3. Debian- Ian Murdoch 1993.

A very popular non-commercial distribution. Strong emphasis on ease of installation and administration
has become the base for many commercial distributions. Regained it’s leading position as a web server
platform earlier this year (2012).

5.4. Gentoo- Daniel Robbins 1999

Gentoo for the most part avoids precompiled binaries and encourages users to to optimise the kernel and
software application for their hardware. Originally developed by Daniel Robbins as "Enoch" it became
Gentoo in 2002 and ownership was transferred to a not for profit company the "Gentoo Foundation" in
2004. Thepackage management system is called "Portage".

Considered to be more technically demanding than many other distribution once installed the optimized
system should outperform other distributions on the same hardware.

5.5. Arch - Judd Vinet 2002

Binary packages aimed at i686 and x86-64 processors to better performance on modern hardware. Target-
ting intermediate and advanced Linux user who are not afraid of the command line. Development headed
by Aaron Griffen since 2007.

"Relying on complex tools to manage and build your system is going to hurt the end users. [...] "If you try
to hide the complexity of the system, you’ll end up with a more complex system". Layers of abstraction
that serve to hide internals are never a good thing. Instead, the internals should be designed in a way such
that they NEED no hiding."

--Aaron Griffin

5.6. Cent-OS.

A rebadged release of Red Hat, claims 100% binary compatibility. First released in 2002, overtook Debian
as the most popular release for web servers in 2011.

5.7. Ubuntu

Debian derived commercial distribution. Hugely popular on the desktop.Preeminent in its ease of instal-
lation and use.

5.8. Mint.

First release in 2006 Mint is based on Ubuntu. Reckoned by some to be the best current distribution it is
challenging Ubuntu to be the most popular desktop distribution. Mint uses proprietary software applica-
tions and drivers in addition to those employed on most out of the box Linux distributions and so is able to
to claim to be more "comfortable" or complete than other community releases. Mint appears to be quite
heavily commercially sponsored.

5.9. OpenSuse.

Started in 1992 in Germany to produce a German language version of the Slackware distribution. First
release 1994. Bought by Novell in 2003. Features the YAST systems administration tool. OpenSuse
project started 2005. Novell bought by Attachmate in 2010. Suse split off and headquarters moved back to
Nuremberg.

Page 22

City LinUX The Systems Admin’s Introduction to Linux (S5) Linux distributions

5.10. Knoppix.

Claims to be the firstLi veCD (and now Li veUSB) distributions of Linux. Based on the Debian distribu-
tion it includes some proprietary software. It was first released in 2003.

5.11. Slax

Slax, first released in 2002 predates Knoppix. It is currently developed by Tomas Matejicek. Packages can
be selected using a website to build a customisedSlax iso image.

One of the chief advantages of the Slax distribution is its ease of customisation usingSlackwarepackages
andSlax modules. A package manager such as APT is not required to load additional software,Slax mod-
ules are completely self contained.

Page 23

(S5) Linux distributions TheSystems Admin’s Introduction to Linux City LinUX

Page 24

City LinUX The Systems Admin’s Introduction to Linux (S6) Linux Commands

Section 6.
Linux commands.

"When in doubt, use brute force."

Ken Thompson.

Page 25

(S6) Linux commands The Systems Admin’s Introduction to Linux City LinUX

6. Commands,arguments & options.

UNIX / Linux commands are terse, silent and sometimes cryptic.

Silence is golden!

That is when everything works say nothing, only when it does not work is any commentary required.

As we will see later Linux tools are expected to be linked with other tools. Spurious output would reduce
the ease of linkage. Besides, Unix considers the user to be a cognisant adult who tells the shell what to do.
If you tell the shell to copy file a to file b, then expect it to be done and have faith that it will be done. You
should not need, nor expect, the shell to tell you that it was done.

Terse file names.

If N characters in a filename would describe a tools function, use N-M where M > 0.

When terminals were predominately slow and noisy teletypes any reduction in typing/printing was to be
welcomed. Short command names leave less room for the "Fat finger gremlin" to cause tpying porblems.

6.1. Usersof command.com.

Users familiar with PC/MS-DOS should note that Unix was one of the major inspirations for DOS, therefore at
the conceptual level and at the software tool level there are many parallels. These tools are common to both
operating systems: more, set, sort, shift, if, print, cd, mkdir, rmdir, date, echo.

Table of Linux/Dos equivalents:
Linux DOS Linux DOS
ls dir diff comp
cat type find tree
mv rename stty mode
cp copy clear cls
rm del dbx debug
grep find ed edlin
chmod attrib foreach for

6.2. Endof input.

Many programs which expect a filename on the invoking command line will, if it is not given, automatically
look to the keyboard, for input. To terminate the keyboard input you will need to type ˆd, (ˆ indicates that the
control key should be pressed and held so ˆd means, hold down the control key and press the "d" key once. You
don’t need to worry about shifting the d, either upper or lower case "d" will work.) ˆd means "end of input" or
"done". Whenever a terminal just echoes and does nothing try usingˆD just in case some command is in input
mode.

6.3. Optionsand switches.

Most Linux commands accept additional words, flags, switches oroptions on the command line. Collectively
these are calledparametersand may be referenced in scripts by their position on the command line as we will
see later. The default action of the command can be modified by adding options to the command line. Most (but
not all) options are preceded by the minus sign, for example,

sa101$ cat /etc/group
sa101$ cat -n /etc/group

The first command lists the contents of a file, whilst the second precedes each line with a line number, (which
can be useful when compilers refer to errors on particular lines). In fact thels command which simply lists the
files in a directory, has in most flavors of Unix/Linux, over forty different options (not counting the alternative
"long" options) which may be combined to provide specific details of the files.

E.g. The next command lists files and directories in the current directory in long format, in order of creation
time,

$ ls - lt

Page 26

City LinUX The Systems Admin’s Introduction to Linux (S6) Linux Commands

6.4. Commandline arguments.

Command line arguments are often essential for a command to work, for example to locate the string "root"
within the UNIX user groups file/etc/groupwe usegrep, or "get regular expression".

sa101$ grep root /etc/group

The filename and the string are called arguments and can often be expressed in a metanotation common to many
Linux/Unix tools, i.e.

sa101$ grep ’ˆ[eat]\{3\}$’ /usr/share/dict/words

This command searches for anagrams of the word "eat". It scans the file containing the words (one per line) that
is used by tools that check spellings. The pattern uses the following metanotation :-

ˆ start of line
[eat] any one character from enumerated characters
{3} exactly 3 instances of the previous character
$ end of line
\ escape the literal interpretation of the following character

NB. The pattern is placed in single quotes to stop the shell from interpreting the metanotation as file matching
metacharacters. Theshell passes the expression to the tool enumerated on the command line, i.e.grep which
will then parse the regular expression.

The metanotation "\" is used to "escape" the braces and prevent them from being interpreted as literal characters.

The command doesn’t quite work because it would return "eet", "aat", "taa" etc if they existed. Using a restricted
data set and limited testing creates an illusion of success.

6.5. Exercises .

Check that the file/usr/share/dict/wordsexists usingls.

If the file is missing use the package manager apt-get to install it with the following command.

sa101$ sudo apt-get install wbritish-large

Repeat the commands from the lesson above

Try the same command command using the string "dog".

Investigate the following commands. (By the end of the course you should be reasonably comfortable with read-
ing and interpreting regular expressions.)

sa101$ grep -v ’[aeiou]’ /usr/share/dict/words
sa101$ grep ’ˆ[ˆaeiou]*a[ˆaeiou]*e[ˆaeiou]*i[ˆaeiou]*o[ˆaeiou]*u*$’\
/usr/share/dict/words
sa101$ grep ’ˆ[ˆa]*a[ˆb]*b[ˆc]*c[ˆd]*d[ˆe]*e’ /usr/share/dict/words

On first viewing some of the syntax demonstrated here is likely to be perplexing but because it is used by many
different programs, there will come a time when familiarity breeds content! However, until then it will mean
ev ery typo that includes some punctuation characters is likely to generate error messages.

Page 27

(S6) Linux commands The Systems Admin’s Introduction to Linux City LinUX

Page 28

City LinUX The Systems Admin’s Introduction to Linux (S7) UNIX philosophy

Section 7.
Philosophy.

"Write programs that do one thing and do it well. Write programs to work together. Write programs
that handle text streams, because that is a universal interface."

Doug McIlroy - The Bell System Technical Journal 1978.

Page 29

(S7) UNIX philosophy The Systems Admin’s Introduction to Linux City LinUX

7. TheUNIX philosophy.

One of the great strengths of UNIX/Linux is it’s simplicity and its connectivity. By writing small programs that
do one thing well and connecting them to other programmes it is possible for us dwarfs to stand on the shoulders
of giants. (Bob Young/ Isaac Newton)

Doug McIlroy, as head of the Bell Labs CSRC and contributor to Unix pipes, summarised Unix philosophy as
follows:

"This is the Unix philosophy: Write programs that do one thing and do it well. Write programs to work
together. Write programs to handle text streams, because that is a universal interface."

7.1. Keep it Simple.

Eric S. Raymond, in "The Art of Unix Programming", summarised the Unix philosophy as the KISS Principle of
"Keep it Simple, Stupid.

7.2. Raymond’s design rules:

Rule of Modularity: Write simple parts connected by clean interfaces.

Rule of Clarity: Clarity is better than cleverness.

Rule of Composition: Design programs to be connected to other programs.

Rule of Separation: Separate policy from mechanism; separate interfaces from engines.

Rule of Simplicity: Design for simplicity; add complexity only where you must.

Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing else will do.

Rule of Transparency: Design for visibility to make inspection and debugging easier.

Rule of Robustness: Robustness is the child of transparency and simplicity.

Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.[4]

Rule of Least Surprise: In interface design, always do the least surprising thing.

Rule of Silence: When a program has nothing surprising to say, it should say nothing.

Rule of Repair: When you must fail, fail noisily and as soon as possible.

Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.

Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.

Rule of Optimization: Prototype before polishing. Get it working before you optimize it.

Rule of Diversity: Distrust all claims for "one true way".

Rule of Extensibility: Design for the future, because it will be here

Eric S Raymond - The Art of Unix Programming

Page 30

City LinUX The Systems Admin’s Introduction to Linux (S8) Linux shells

Section 8.
Linux shells.

"In fact, we started off with two or three different shells and the shell had life of its own."

Ken Thompson.

Page 31

(S8) Linux shells The Systems Admin’s Introduction to Linux City LinUX

8. TheLinux shell.

Although shells enable operating system like activities, they are user processes like any other. Any number of
shells can co-exist on Unix/Linux system and many are provided as standard.

8.1. sh- Bourne shell.

The default shell for UNIX Version 7, written by Stephen Bourne at Bell Labs.Became the predominant
Systems V shell from ATT. The Bourne shell and it’s successors have continued to be the shell of choice
for most systems administrators.

8.2. dash- fast shell.

The Bourne shell has recently come back from the dead, re-incarnated asdashbut with a symbolic link to
shwhich is how it is normally used.

Extensions tosh found in theksh andbashand which have been designated by POSIX have been incor-
porated but the shell is designed to be smaller, mores stable and faster (hencedash) than the Bourne
Again Shell. It is described as the "standard command interpreter" for some systems including Ubuntu
although it is not the default shell for user accounts.

8.3. bash- Bourne Again Shell.

Created by Brian Fox for the FSF, the Bourne Again Shell incorporated the features from thecshandksh.
On most Linux systems it is the default shell that is set for a user when their account is created.

8.4. csh- C shell.

The Csh developed by Bill Joy at UCB becamethe BSD default shell and tended to be most favoured by
programmers. Thecsh had sophisticated features such as history and job control but was regarded as
buggy for many years.

8.5. ash- Almquist Shell.

The successor to thecsh as the default BSD shell is ash, a really lightweight clone of sh developed by
Kenneth Almquist. Ash is commonly used in embedded Linux implementations such as the Android
phone.

8.6. zsh.

Created by Paul Falstead in 1990 at Princeton thezsh(Zong Shao) has the most enigmatic name and some
of the most sophisticated features, including spelling correction, loadable modules, themed prompts, full
TCP and domain socket controls, FTP and multi line editing.

8.7. ksh- Korn Shell.

The Korn shell developed by David Korn at Bell Labs in 1980s incorporated many of the advanced fea-
tures of the C-shell into the Bourne shell.I used theksh extensively in the AIX environment which
sought to be POSIX compliant but later found that it was not available in many other unix distributions.

The ksh remained proprietaryto AT&T until 2000. Open source versions suchpdksh andmksh were
developed in the interim but all became marginalised by the rise of Linux and the Bourne Again Shell
(bash) which included many of the features, such as job control and history, that were missing from the
original.

Derivatives of the Korn shell include the Desktop Korn Shell (dtksh) dev eloped to incorporate CDE wid-
gets,tksh which includes access to tk widgets andokshan Open BSD implementation.

8.8. rbash- restricted Bourne Again shell.

Rsh (stet) was often a separate binary fromsh but the restricted Bourne Again Shell is a link tobash.
Invoking bashasrbash or using the-r flag sets up a more restricted or controlled environment than nor-
mal. (see man bash).

Page 32

City LinUX The Systems Admin’s Introduction to Linux (S8) Linux shells

8.9. Exercises.

Experiment with usingash, dashand other shells.

Useman to find out about thechshcommand and try changing your shell.

Check the value of the environment variable SHELL.

Page 33

(S8) Linux shells The Systems Admin’s Introduction to Linux City LinUX

Page 34

City LinUX The Systems Admin’s Introduction to Linux (S9) Shell programming-1

Section 9.
Shell programming.

"Nobody really knows what the Bourne shell’s grammar is. Even examination of the source code is
little help."

Tom Duff.

Page 35

(S9) Shell programming-1 The Systems Admin’s Introduction to Linux-9 City LinUX

9. Shellprogramming.

9.1. Standardin, standard error and standard out.

All shell programming requires that we understand the role of the three fundamental input and output streams as
evinced in the C programming language;standard in, standard errorandstandard out.

Standard in is the input stream, it’s file descriptor is always 0. Standard in is represented at the file level by
/dev/stdin.

When using the shell interactively, standard in is normally connected to the keyboard.

Standard out is the output stream. The file description is 1. We can connect tostandard out through the file
dev/stdout. When using the shell interactively standard out is normally connected to the terminal or a pseudo-
terminal device.

Standard error is an alternative output stream that is typically used for for error messages or diagnostics. The
file descriptor is 2. File access is through/dev/stderr. Standard error is also usually connected to the terminal
device.

Using pipes we can connect the output stream of one program to the input steam of another.

9.2. Input and Output redirection.

Using redirection we direct the output streamsstderr andstdout to the same or to different files.

Some metanotation and terminal special characters.

> redirect the output stream ˆd Endof input
< redirect the input stream ˆc Signal2 (keyboard interrupt)
| pipe

&# file id

9.3. Exercises.

sa101$ ls foo
ls: cannot access foo: No such file or directory
sa101$ ls foo >bar
ls: cannot access foo: No such file or directory
sa101$ ls bar
bar
sa101$ cat bar
sa101$ ls foo 2>bar
sa101$ cat bar
ls: cannot access foo: No such file or directory
sa101$ ls foo bar >foobar 2>&1
sa101$ cat foobar
ls: cannot access foo: No such file or directory
bar

Redirecting the output stream to a file creates the file if it does not exist. If the file does exist it is truncated to
zero bytes and then the new content is added. To append to an existing file use ">>".

sa101$ cat >cats
moggy
lion
leopard
lynx
tiger
puma
ˆd
sa101$ cat >>cats
cheetah
panther
jaguar
ˆd

Page 36

City LinUX The Systems Admin’s Introduction to Linux (S9) Shell programming-1

sa101$ cat cats

9.4. Pipes.

Using the pipe character| we can connectstandard out from one process tostandard in of another.

The commandwc counts the number of words, lines and bytes in a file.

We can find those groups of which root is a member using a regular expression.

sa101$ grep root /etc/group

By piping the output from grep into the input of wc we can count them.

sa101$ grep root /etc/group|wc -l

If we want a list of the group names identified by the group command we could alternatively pipe the output to
cut.

sa101$ grep root /etc/group|cut -d: -f1

Here we have set 2 options to thecut command:

-d: setthe field delimiter to ":".

-f1 print the first field.

Whencut gets the option-d it looks for the next non-space character which it will use as the field delimiter. The
space character (ASCII decimal 32) is the token separator in UNIX / Linux shells but cut doesn’t care if the
command is recast as

sa101$ cut -d : -f 1

This behaviour is not consistent across all UNIX / Linux commands. You will often find with this kind of flag
that it is essential to keep the flag and the required character adjacent to each other. When usingawk for
instance the field separator is set with the-f flag. If the next character is a space () thiswill be used as the field
separator.

9.5. Pipelines

"A pipeline is a sequence of one or more commands separatedby one ofthe control operators| or |& . The
format for apipeline is

[time [-p]] [!] command [[| | |&] command2 ...]

The standardoutput of command is connected via a pipe to the standard input of command2.This connection
is performed before any redirection specified by the command...If |& is used, the standard error of command is
connected to command2’s standard input through the pipe; it is shorthand for2>&1|. This implicit redirection
of the standard error is performed after any redirection specified by the command."
Chet Ramey et al - bash man page 2012.

9.6. Lists.

"A list is a sequence of one or more pipelines separated by one of the operators;, & , && , or ||, and optionally
terminated by one of;, & , or <newline>.

Of these list operators,&& and || have equal precedence, followed by; and& , which have equal precedence"
[with each other].

"A sequence of one or more newlines may appear in a list instead of a semicolon....

If a command is terminated by the control operator& , the shell executes the command in the background in a
subshell. The shell does not wait for thecommand to finish, and the return status is 0. Commands separated by
a (;) are executed sequentially; the shell waits for each command to terminate in turn. The return status is the
exit status of the last command executed.

AND and OR lists are sequences of one of more pipelines separatedby the && and || control operators,
respectively. AND andOR lists are executed with left associativity. An AND list has the form

Page 37

(S9) Shell programming-1 The Systems Admin’s Introduction to Linux-9 City LinUX

command1&& command2

command2 is executed if, and only if, command1 returns an exit status of zero.

An OR list has the form

command1|| command2

command2 is executed if and only if command1 returns a non-zero exit status. The return status ofAND and
OR lists is the exit status of the last command executed in the list."
Chet Ramey et al - bash man page 2012.

9.7. Exercises.

Investigate the use of the commandpsusing theman command.

Pipe the output ofps -efto wc. How many processes are running on the local host?

The first field in the output fromps -efis the process user id.

Using ps, and grep generate a list of processes being run with theroot id. Usethe same pipeline again to list
those process executing with your user id.

Extend the pipeline withwc and count the number of processes being run with theroot id.

When using a regular expression to findroot processes, the count is different if the string "root" is anchored to
the start of line to that of the non-anchored string. Explain why that is so. Investigate theroot processes by
inspection.

9.8. Setting variables in bash.

Local variables are are set with a simple equate i.e.

<variable>=<value>

The value set in the variable may be obtained by preceding the variable name with$.

sa101$ colour=blue
sa101$ echo $colour
blue

Local variables

Local variables onlyexist in the current shell.

sa101$ echo $colour
blue
sa101$ bash
sa101$ echo $colour
sa101$ exit
sa101$ echo $colour
blue

Note that the when we return to the shell where the local variable was set it remains available. Global vari-
ables.

Global variables are created byexporting the local variable. As always there is more than one way to do this.

sa101$ COLOUR=blue
sa101$ export COLOUR

NB The use of a variable name in theexport command is implicit.

sa101$ export COLOUR2=red
sa101$ echo $COLOUR $COLOUR2
blue red
sa101$ bash
sa101$ echo $COLOUR && echo $COLOUR2 && exit

Note that in the last command we are using the shellAND list to output the variables and return to the previous
shell.

Page 38

City LinUX The Systems Admin’s Introduction to Linux (S9) Shell programming-1

I hav eused all upper case names for the exported variables. This is a very strong tradition in UNIX / Linux shell
scripting which should be followed. Unfortunatelynot every exported variable is in upper case.

A l isting of all exported variables set in the current shell can be obtained with the commandsenv. or printenv.

A l isting of all variables (including those exported) is produced by the commandset.

9.9. Bourne Shell Variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases, Bash assigns a default
value to the variable.

CDPATH A colon-separated list of directories used as a search path for the cd built in command.
HOME The current user’s home directory; the default for the cd built in command. The value of this

variable is also used by tilde expansion (see Tilde Expansion).
IFS A list of characters that separate fields; used when the shell splits words as part of expansion.
MAIL If this parameter is set to a filename or directory name and the MAILPATH variable is not

set, Bash informs the user of the arrival of mail in the specified file or Maildir-format direc-
tory.

MAILPATH A colon-separated list of filenames which the shell periodically checks for new mail. Each
list entry can specify the message that is printed when new mail arrives in the mail file by
separating the file name from the message with a ’?’. When used in the text of the message,
$_ expands to the name of the current mail file.

OPTARG Thevalue of the last option argument processed by the getopts builtin.
OPTIND Theindex of the last option argument processed by the getopts builtin.
PATH A colon-separated list of directories in which the shell looks for commands.A zero-length

(null) directory name in the value of PATH indicates the current directory. A null directory
name may appear as two adjacent colons, or as an initial or trailing colon.

PS1 The primary prompt string. The default value is ’\s-\v\$ ’. See Printing a Prompt, for the
complete list of escape sequences that are expanded before PS1 is displayed.

PS2 Thesecondary prompt string. The default value is ’> ’.

9.10. BashVariables

These variables are set or used by Bash, but other shells do not normally treat them specially. For a full list see
man bash.

9.11. CommandSubstitution

Command substitution allows the output of a command to replace the command itself. Command substitution
occurs when a command is enclosed as follows:

$(command)

or

‘command‘

Bash performs the expansion by executingcommandand replacing the command substitution with the standard
output of the command, with any trailing newlines deleted. Embedded newlines are not deleted, but they may be
removed during word splitting. The command substitution$(cat file)can be replaced by the equivalent but faster
$(< file).

When the old-style back quote form of substitution is used, backslash retains its literal meaning except when
followed by ’$’, ’‘’, or ’´. The first back quote not preceded by a backslash terminates the command substitu-
tion. When using the$(command) form, all characters between the parentheses make up the command; none
are treated specially.

Command substitutions may be nested. To nest when using the back quoted form, escape the inner back quotes
with backslashes.

If the substitution appears within double quotes, word splitting and filename expansion are not performed on the
results." Chet Ramey et al - bash man page 2012

Page 39

(S9) Shell programming-1 The Systems Admin’s Introduction to Linux-9 City LinUX

9.12. Exercises.

The date command allows all users to get the current date and time and the superuser (root) to set the system
time and date.

Read the man page to discover the options that are available and the formats in which the date may be output.

Note the options-d and--date=STRING. This is one of those less well known but rather powerful options that
seem to sneak under the radar from time to time. The-d option should actually be "-d <STRING> and you
need to refer to the sectionDATE STRING , later in the manual, to get a sense of the available STRINGs. Using
a largely free format "STRING" it is possible to obtain a correctly formated output for dates other that of
"today" or now. E.g. -d "last month" will give the previous month, a tremdously useful tool for automated
scanning and reporting of logged events.

sa101$ date
Mon Sep 23 21:28:33 BST 2013
sa101$ date +%b
Sep
sa101$ date +%b -d "last month"
Aug

Enter the command to output the current date and time.

Adjust the command to output:

the month as a text string.

the day of the month,

the day of the year,

the number of seconds since the epoch.

Now use command substitution to set a variable calleddom to the current day of the month. (Variables are set
with a simple equate i.e.<variable>=<value>). Take a listing of all current processes and redirect to a file
named with the date in the formatYYMMDD:HHmmss .

Page 40

City LinUX The Systems Admin’s Introduction to Linux (S9) Shell programming-1

Use the table below to revise the commands and metanotation you have studied so far.

9.13. Tools and metanotation:

Commands Metanotation
ps reporta snapshot of current processes ; command list separator
cut selectsections from each line of text && AND list separator
chsh changeyour default shell || ORlist separator

\ "escape" the following character
bash bourneagain shell > redirect the output stream
sh bourneshell < redirect the input stream
ls list files | pipe
cat concatenatefiles &# file id

mv move or rename files Terminal Special characters
cp copy files ˆd end of input
rm remove files ˆc signal 2 (keyboard interrupt)
grep getregular expression
chmod changemode (file permissions)
diff report the difference between 2 text files
find findfiles in directory tree
clear clearscreen
ed edita file
uname -a print system information
arch printmachine architecture
whoami printeffective user id (also works as "who am i")
last printlist of logins from current wtmp file
finger lookupuser information
man printthe manual pages
info print the info documents
apropos searchthe whatis database

Page 41

(S9) Shell programming-1 The Systems Admin’s Introduction to Linux-9 City LinUX

Page 42

City LinUX The Systems Admin’s Introduction to Linux (S10) File inodes

Section 10.
File inodes.

"In truth, I don’t know either. It was just a term that we started to use."

Denis Ritchie - 2002.

Page 43

(S10) File inodes The Systems Admin’s Introduction to Linux City LinUX

10. TheUNIX / Linux inode.

Unix and Linux file systems employ the concept of theinode.

It is useful to think of theinode as theindex node but the origin of the name is uncertain. Dennis Ritchie wrote
in 2002

"In truth, I don’t know either. It was just a term that we started to use. "Index" is my best guess, because
of the slightly unusual file system structure that stored the access information of files as a flat array on the
disk, with all the hierarchical directory information living aside from this. Thus the i-number is an index
in this array, the i-node is the selected element of the array. (The "i-" notation was used in the 1st edition
manual; its hyphen was gradually dropped.)"

The inode is a data structure that stores all the information about a file system object (file, device node, socket,
pipe, etc.), but not the file name or data content.

Eachinode is identified by an integer number referred to as ani-number or inode number.

Inodes store information about files and directories such as file ownership, access mode (read, write, execute
permissions), and file type. On many file system implementations, the maximum number ofinodes is fixed at
the time of file system creation, limiting the maximum number of files the file system can hold. A typical alloca-
tion heuristic forinodesin a file system is one percent of total size.

The inode number indexes a table of inodes in a known location on the device. From theinode number, the
file system driver portion of the kernel can access the contents of the inode, including the location of the file.

A fi le’s inode number can be found using thels -i command. Thels -l command displays some of the inode
contents for each file.

Some Linux file systems such as ReiserFS omit an inode table, but must store equivalent data in order to provide
equivalent capabilities. The data may be calledstat data, in reference to thestat system call that provides the
data to programs.

10.1. Filenames and directories.

Inodes do not contain file names, only file metadata. Linux / UNIX directories are lists of association struc-
tures, each of which contains one filename and oneinode number. The file system driver searches a directory
for a particular filename in order to find the corresponding inode number.

The in-memory representation of this data is calledstruct inode. Systems derived from BSD use the term
vnode, the v referring to the kernel’s virtual file system layer.

10.2. POSIXinode description

The POSIX standard mandates filesystem behaviour strongly influenced by traditional UNIX filesystems. Regu-
lar files must have the following attributes:

The size of the file in bytes.
Device ID (this identifies the device containing the file).
The User ID of the file’s owner.
The Group ID of the file.
The file mode which determines the file type and how the file’s owner, its group, and others can access the
file.
Additional system and user flags to further protect the file (i.e. limit its use and modification).
Timestamps for when the inode itself was last modified (ctime, inode change time),
the file content was last modified (mtime, modification time), and the file was last accessed (atime,
access time).
A count of how many hard links point to the inode.
Pointers to the disk blocks that store the file’s contents.

The stat system call retrieves a file’s inode numberand some of the information in theinode.

Files can have multiple names. If multiple names hard link to the sameinode then the names are equivalent. The
first to be created has no special status. This is unlike symbolic links, which depend on the original name, not
the inode (number).

An inode may have no links. An unlinked file is removed from disk, and its resources are freed for reallocation
but deletion must wait until all processes that have opened it finish accessing it. This includes executable files
which are implicitly held open by the processes executing them. It is typically not possible to map from an open

Page 44

City LinUX The Systems Admin’s Introduction to Linux (S10) File inodes

file to the filename that was used to open it. The operating system immediately converts the filename to an inode
number then discards the filename. This means that the getcwd() and getwd() library functions search the parent
directory to find a file with an inode matching the working directory, then search that directory’s parent direc-
tory, and so on, until reaching the root directory. SVR4 and Linux systems maintain extra information to make
this possible.

Historically, it was possible to hard link directories. This made the directory structure into an arbitrary directed
graph as opposed to a directed acyclic graph (DAG). It was even possible for a directory to be its own parent.
Modern systems generally prohibit this confusing state, except that the parent of root is still defined as root.

A fi le’s inode number stays the same when it is moved to another directory on the same device, or when the
disk is defragmented which may change its physical location. This also implies that completely conforming
inode behaviour is impossible to implement with many non-Unix file systems, such as FAT and its descendants,
which don’t hav e a way of storing this invariance when both a file’s directory entry and its data are moved
around.

Installation of new libraries is simple withinode filesystems. A running process can access a library file while
another process replaces that file, creating a new inode, and an all new mapping will exist for the new file so that
subsequent attempts to access the library get the new version. This facility eliminates the need to reboot to
replace currently mapped libraries. For this reason, when updating programs, best practise is to delete the old
executable first and create a new inode for the updated version, so that any processes executing the old version
may proceed undisturbed.

10.3. Practicalconsiderations

Many computer programs used by system administrators in UNIX / Linux operating systems often designate
files with inode numbers. Examples include popular disk integrity checking utilities such as thefsck or pfiles.
Thus, the need arises to translate inode numbers to file pathnames and vice versa. This can be accomplished
using the file finding utilityfind with the -inum option, or thels command with the appropriate option (-i on
POSIX compliant platforms).

It is possible to use up a device’s set of inodes. When this happens, new files cannot be created on the device,
ev en though there may be free space available. For example, a mail server may have many small files that don’t
fill up the disk, but use manyinodes.

Filesystems such asJFS, and XFS escape this limitation with extents and/or dynamicinode allocation, which
can ’grow’ the filesystem and/or increase the number of inodes.

10.4. Exercises.

Compare and contrast the Linux ext4 file system with NTFS.

Page 45

(S10) File inodes The Systems Admin’s Introduction to Linux City LinUX

Page 46

City LinUX The Systems Admin’s Introduction to Linux (S11) Shell programming-2

Section 11.
Shell programming 2.

"There are two different areas of functionality in shells. First is interactive use and the second is
scripting. Much of the debate about shells has focused on interactive use only. For example, tcsh is
an acceptable shell for interactive use but practically unusable for scripting."

David Korn - 2001.

Page 47

(S11) Shell programming-2 The Systems Admin’s Introduction to Linux City LinUX

11. Shellprogramming 2.

11.1. Shellscripts.

A shell script is a series of commands, lists or pipes executed in a shell non-interactively. A shell script does not
need to be saved to a file. e.g.

sa101$ if [-f /etc/shadow];then echo "got it! Now what?";\
else echo "Search me!";fi

The above is a perfectly valid shell script. Note that no file was required.We can re-execute the script by using
the shell history.

NB. the escape character (\) is used to indicate that the line continues without a line feed, you should not
include it when typing this script at the terminal.

11.2. Shellhistory.

The shell can keep a record of your previous commands. There are various mechanisms for accessing the shell
history. Bash can use both the old csh ! history syntax, emacs or vi. The editor for shell history can be set with
the environment variable FC_EDIT.

If you knowvi the easy way to access history is to set the shell optionvi.

sa101$ set -o vi

Having set the option<esc>kputs you into vi mode with the last command issued, available as if at the bottom
of a text file. We can now use the usual vi commands to edit the line or just hit return to re-execute it.

Hitting k will step us back through the history (i.e. go up the history file),j will step us back down the lines of
the history file.

11.3. Exercise

sa101$ mkdir test
sa101$ cd test
sa101$ touch file1
sa101$ set -o vi
sa101$ ˆ[k
sa101$ k
sa101$ f1r2
sa101$ ls -l

NB: ˆ[is the notation for a keyboard <esc> key.

If you are usingvi mode you can search the history for a string with the same command that is used invi and in
less. i.e. /<string>.

sa101$ history
...

468 vi train_news
469 sudo cp /var/tmp/t train_news
470 vi train_news
471 sudo bash
472 pwd
474 cd ˜
475 pwd
476 cd clients
477 cd fulford/clients
478 ls
479 cd po*
480 cd sa101
481 make xhtml
482 sudo make xhtml
483 pwd
484 ls

Page 48

City LinUX The Systems Admin’s Introduction to Linux (S11) Shell programming-2

485 d
486 cd /usr/local/web
487 cd cl
488 set -o vi
489 vi train_news
490 vi sa101_news
491 sudo bash
492 history
493 set -o vi
494 make xhtml
495 history

sa101$ set -o vi
sa101$ ˆ[K/web
sa101$ cd /usr/local/web

After issuing the/<string> command it is possible to step back through each instance of the string<string> by
hitting the next key (n).

11.4. Historysubstitution.

A l ist of recent commands issued can be obtained with thehistory command. This will list the number of previ-
ous commands set by the environment variableHISTSIZE . The default value for thebashshell is 500. (This
can be changed by users setting a different value in their home directory.profile.)

The commands are numbered and can be re-executed by using the! character, also known asbangor shriek.

E.g.

sa101$ history 5
492 man history
493 history|wc
494 history|less
495 history -5
496 history 5

sa101$!493
history|wc

497 1626 492910

This is known ashistory substitution and can be incorporated into shell scripts.

If you are going to usehistory frequently, it is useful to use thealias command to reduce the keystrokes
required to obtain thehistory list.

sa101$ alias h=history
sa101$ h 5

502 ls -l 1*
503 date
504 grep fulford /etc/passwd
505 df
506 h 5

11.5. Exercises.

Read theman page forhistory.

Read theman page forbashand find the references toHISTSIZE , HISTFILE andHISTFILESIZE .

Set the value ofHISTSIZE in $HOME/.profile .

Use the table of commands and metanotation below to revise and consolidate your learning so far.

Page 49

(S11) Shell programming-2 The Systems Admin’s Introduction to Linux City LinUX

11.6. Tools and metanotation:

Commands Metanotation
ps reporta snapshot of current processes ; command list separator
cut selectsections from each line of text && AND list separator
echo displaya line of text. || OR list separator
if conditionalshell construct \ "escape" the following character
bash bourneagain shell > redirect the output stream
sh bourneshell < redirect the input stream
ls list files | pipe
cat concatenatefiles &# file id
grep getregular expression ! initiate history substitution

mv move or rename files Terminal Special characters
cp copy files ˆd end of input
rm remove files ˆc signal 2 (keyboard interrupt)
chmod changemode (file permissions)
diff report the difference between 2 text files
find findfiles in directory tree
clear clearscreen
ed edita file
uname -a print system information
arch printmachine architecture
whoami printeffective user id (also works as "who am i")
last printlist of logins from current wtmp file
finger lookupuser information
man printthe manual pages
info print the info documents
apropos searchthe whatis database
set readand write variables
history displayrecent commands
touch changea file’s timestamps
chsh changeyour default shell

Page 50

City LinUX The Systems Admin’s Introduction to Linux (S12) Linux editors

Section 12.
Linux editors.

"Vi has two modes. The one in which it beeps and the one in which it doesn’t."

Unknown.

Page 51

(S12) Linux editors The Systems Admin’s Introduction to Linux City LinUX

12. Linux editors.

There are any number of editors available in Linux. For systems hackers and programmers the choice was often
made betweenemacsor vi.

As more users came to the UNIX / Linux environment from Windows they tended to be unwilling to learn the
command structure of editors like vi and looked for more intuitive alternatives which made greater use of the
PC’s extended keyboard.

12.1. Pico

Picobecame popular through its use with thepine mail user agent.

12.2. Nano

The default editor in Ubuntu isnano, a clone of pico which the Ubuntu man pages describes as "non free".
That’s a swipe at the licence used by Washington University rather than indicating that a charge is made for
Pico’s use.

12.3. Editorsto shake a stick at.

Use a search engine to find some of the available editors in Ubuntu. Theseinclude

gedit Gnomegraphical editor
cream extension of vim with a graphical interface
jedit graphicaleditor written in java
scite guieditor with extensive syntax highlighting
leafpad I’mguessing it resembles "WordPad"?
bluefish lookslike a more full featured word processor.
xemacs emacswith GUI
kwrite akdm editor
scribes aneditor aimed at the Gnome environment
lyx for technical authors and scientists!

12.4. ed,ex and vi.

In the beginning there wased. Theed line editor was written in PDP 11/20 assembler in 1971 by Ken Thomp-
son and was one of the first software tools created for the UNIX operating system.

Aspects ofedwere included inexwhich became one of the engines in the visual editorvi.

Every Linux systems administrator should know the basiced commands and be able to bail out systems that are
otherwise unusable at the command line. It is also useful to be able to incorporateed in here scripts. (Here
scripts are those where the input redirection is from the script itself rather than an external file.)

The syntax ofed is very simple and it takes only a few minutes to learn the basics.

12.5. Example.

sa101# cd /etc

sa101$ head -7 shadow

root:$1$0OzJEaEY$D55n1EnPIPaOK8u0RU89D/:15137:0:::::

bin:*:9797:0:::::

daemon:*:9797:0:::::

adm:*:9797:0:::::

lp:*:9797:0:::::

sync:*:9797:0:::::

shutdown:*:9797:0:::::

sa101# ed shadow

778 #<- number of characters in the file

1s/:[ˆ:]*:/::/ #<- go to line1. Substitute the first expression by the second

w #<- write the file back to disc

744 #<- number of characters written back to file

q #<- quit

sa101$ head -7 shadow

Page 52

City LinUX The Systems Admin’s Introduction to Linux (S12) Linux editors

root::15137:0:::::

bin:*:9797:0:::::

daemon:*:9797:0:::::

adm:*:9797:0:::::

lp:*:9797:0:::::

sync:*:9797:0:::::

shutdown:*:9797:0:::::

12.6. Usingvi.

Vi i s the standard System V text editor. It is installed by default on every host based system V UNIX, including
all Linux distributions, that I have come across.It is not available as standard in Android although implementa-
tions are downloadable.

True vi binaries are not normally found on Linux distributions. Enhanced alternatives are vim, elvis, nvi and
vile. The anecdotal evidence would suggest that Vim (Vi IMproved) has become the dominant incarnation in
the Linux world.

"Over the years since its creation by Bill Joy, vi became the de facto standard Unix editor and a nearly
undisputed hacker favourite outside of MIT, until the rise of Emacs after about 1984. TheSingle UNIX
Specificationspecifiesvi, so.. [it must be included with every conformant system.]..vi is still widely
used by users of the Unix family of operating systems.About half the respondents in a 1991 USENET
poll preferred vi. /In 1999, Tim O’Reilly, founder of the eponymous computer book publishing company,
stated that his company sold more copies of its vi book than its emacs book.

A 2009 survey of L inux Journal readers found that vi was the most widely used text editor among respon-
dents, beatinggedit, the second most widely used editor by nearly a factor of two (36% to 19%)."
Wikipedia 2012.

A table of the more commonvi commands can be found overleaf.

Page 53

(S12) Linux editors The Systems Admin’s Introduction to Linux City LinUX

12.7. Vi commands

Inserting text.
i insert before cursor until <ESC>
a append text after cursor until <ESC>
o open a new line below the cursor.

Deleting text.
x delete a character
dd deletea line
dw deletea word

File control
:w write the file to disc and continue editing.
:wq write the file to disk and exit vi.
:q quit from vi.
:q! quit from vi even if there are changes that have not been saved.

Cursor control.
#G move to line number #.
:# dothe same thing as above.
ˆF move forward through the file by 1 screen.
ˆB move back through the file by 1 screen.
ˆL redraw the screen.
ˆ move to the beginning of the current line.
$ move to the end of the current line.
h move the cursor left.
l move the cursor right.
j move the cursor down.
k move the cursor up.
w move to the start of the next word.
b move to the start of the current word.
/<pattern> searchfor the pattern (forwards).
?<pattern> searchbackwards for the pattern.

Miscellaneous.
u undo the last change.
:r readfile into current document.
y yank the current line into a buffer
:!<command> invoke a shell command.
:r!<command> readoutput of command into current document.

12.8. Exercises.

Complete the training offered by the tutorvimtutor .

Page 54

City LinUX The Systems Admin’s Introduction to Linux (S13) Linux file store

Section 13.
Linux file store.

"Making files is easy under the UNIX operating system. Therefore, users tend to create numerous
files using large amounts of file space.It has been said that the only standard thing about all UNIX
systems is the message-of-the-day telling users to clean up their files."

System V.2 administrator’s guide.

Page 55

(S13) Linux file store The Systems Admin’s Introduction to Linux City LinUX

13. Unix / L inux file store.

13.1. Linux file hierarchy.

For a fuller description of the main directories common to most Linux distributions see

sa101$ man hier

/ The root directory. The start of the tree.
/bin Executables (not always binary) that are needed in single user mode.
/boot Staticfiles for the boot loader.
/dev Sepecial or device files which refer to physical devices.
/etc Configuration files which are local to the machine.Some packages

like Apache have their own subdirectories off of /etc.
/etc/skel When new user accounts are created using the distributed tools

these files are used, often being copied into the new user’s home
directory.

/home Homedirectories are usually mapped to this location.
/lib Share libraries that are necessary to boot the system and run com-

mands found in the root file system.
/mnt Contains the mount points for temporarily mounted file systems.
/opt Addon packages that contain static files.
/proc Mount point for the proc pseudo file system which provides infor-

mation about the running processes and the kernel.
/root Thehome directory for the root user.
/sbin Executables that are needed to boot the system but which are not

usually run by ordinary users.
/srv Sitespecific data that is served by the system.
/tmp Temporary files. May be deleted either by a cron job or at boot up.
/usr Should be mounted from a separate partition. If it holds only share-

able, read only data, as it should it can be mounted by multiple
Linux hosts.

/usr/X11R6 TheX-Windows system (version 11 release 6).
/usr/bin Primarydirectory for executable programs.
/usr/games Binariesfor games and educational programs.
/usr/include Includefiles for the C compiler.
/usr/lib Objectlibraries and executables not normally executed directly.
/usr/lib/groff Files for the GNU document formatting system.
/usr/local localsite file hierarchy.
/usr/sbin Binaries for system admin which are not essential to the boot

process, mounting /usr or system repair.
/usr/share Subdirectories for application specific data that can be shared with

different architectures of the same OS.
/usr/share/dict Word lists used by spell checkers.
/usr/share/doc Documentationabout installed software.
/var Filesthat may change in size e.g. log and spool files.
/var/log Miscellaneouslog files.
/var/mail Userssystem mailboxes.
/var/run Run-timevariable files. Should be cleared when system boots.
/var/spool Filequeued for various programs.
/var/spool/cron Spooledcron jobs.
/var/spool/mqueue Filesspooled for outgoing mail.
/var/yp Databasefiles for Network Information Service.

Page 56

City LinUX The Systems Admin’s Introduction to Linux (S13) Linux file store

bin

boot

dev

etc

home

lib

media

mnt/

opt

proc

root

sbin

srv

tmp

usr

var

skel

httpd

init.d

mail

X11

X11R6

bin

etc

games

include

lib

local

man

sbin

share

src

tmp

gcc

groff

mozilla

yp

bin

etc

sbin

src

dict

fonts

nano

sendmail

swat

terminfo

texinfo

arch

common

<hostname1>

<hostname2>

etc

usr

var

etc

usr

var

City Linux Admin
revision control

Figure 3 -File hierarchy (extract)

Page 57

(S13) Linux file store The Systems Admin’s Introduction to Linux City LinUX

Files:

are not typed by name.
have random access at the byte level
are grouped into directories which are organised in a multilevel hierarchical tree.
can be multi-volume - may be spread across many physical and logical devices.

File access is standard across all version of UNIX/Linux.

Peripheral devices are accessed in the same fashion as data files.

A users home directory is set in the password file /etc/password. When a user logs onto the system their session
begins with their home directory set as the current active directory.

sa101$ pwd
sa101$ cd /var
sa101$ cd log

To return to the home directory you can use the environment variableHOME , tilde expansion, or the command
cd’s default directory. i.e.

sa101$ cd $HOME
sa101$ cd ˜
sa101$ cd

all produce the same result.

File Hierarchy

For a description of some of the main directories common to most Linux distributions see

sa101$ man hier

13.2. Filenaming in Linux.

One of the fundamental objects in Linux is the disk-file. When we execute a program we copy the contents of a
disk-file into semiconductor memory where it then runs, usually accessing other files containing data or text.
Every file has a name which may consist of up to 255 characters from the ASCII character set (excluding the
non-printing characters, null, and newline). Thefollowing are valid distinct filenames:-

fileName
filename
FileName

YY_UR_YY_UB_IC_UR_YY_4ME

program1.dat.version11

This_is_a_VALID_ Unix_filename_which_would_be_most_tedious_\
to_type_everytime_we_wished_to_use_it.Please_note_the_\
back-slash_character_allows_continuation_onto_the_\
next_line

Although punctuation and non-printing characters may be used to construct filenames, generally speaking it is
best to avoid them for reasons which should become obvious. Usually the filename should provide more than a
hint to the use of the file. The use of long file names should always be discouraged but the disadvantage of hav-
ing to type long names is compensated for to a degree by bash’s filename completion mechanism and the use of
metanotation.

13.3. Filename substitution

Filename metanotation is similar to that in other software tools. Metanotation is expanded by the shell before
execution of a command by the shell. E.g.

sa101$ cd eg

Page 58

City LinUX The Systems Admin’s Introduction to Linux (S13) Linux file store

sa101$ ls
d d00 d01 d02 d03 f1 f2 f3
sa101$ echo d*
d d00 d01 d02 d03

If no match is found the metacharacters are interpreted literally.

E.g.

sa101$ cd eg
sa101$ ls echo k*
k*

13.3.1. Metanotationin filename substitution.

Metacharacter Substitution
* matches any sequence of characters
? matches any one character
[abc] matchesany one of a, b or c
[a-z,A-Z] matchesany one alphabetic character
[0-9] matchesany one numeric character
{a,bc,def} matchesany of the enumerated strings
\ disables metanotation for a character
‘a string‘ disables metanotation within quotes
"a string" disables filename metanotation within quotes

13.4. Filename completion.

By typing the first characters of a filename, then the <tab> (or <esc> depending upon the "flavor" of Unix you
are running), the shell will attempt multiple types of completion before attempting to complete the file name by
matching the characters entered to the file names available in the current directory.

Using filename completion encourages the practice of placing the unique part of a file name at the beginning
rather than at the end. For example, if I had log files from my daily work in the month of May, and named them:

logfiledata052200
logfiledata052300
logfiledata052400

I would need to type the following information to have the shell complete the file name for me:

sa101$ less logfiledata0522<CR>

While had I named my log files like this:

220500logfiledata
230500logfiledata
240500logfiledata

All I would need to type is:

sa101$ less 22<tab>

The shell would complete the file name. Potentially this would save 15 keystrokes! However with the use of file
name metanotation we could find the former with

sa101$ less *22

and the latter with

sa101$ less 22*

Page 59

(S13) Linux file store The Systems Admin’s Introduction to Linux City LinUX

It should be noted that using the day, month and year in the DDMMYY format as above will mean that a stan-
dard listing withls will not result in a date ordered list. While using appropriate options will solve this problem
by listing in the order of the creation date stamp, the problem becomes more frustrating if we need to step
through an ordered list in a shell program loop.

The string "logfiledata" in the above example contributes little to our understanding of the file contents. It would
be better by far, to collect all the log files together in a directory created for the purpose and to use the date in
the form YYMMDD thus:

000522
000523
000524

The operating system imposes no structure rules about filenames. File extensions and version numbers are
application dependent, for example the C compiler will expect source code to be stored in files with an extension
of .c i.e. prog.c and web servers expect web pages to end in either .html or .htm.

It is common practice to name the instruction files for sed and awk scripts as below.

namechng.awk - (an awk script)
lowerhtml.sed - (a sed script)

File naming is very important, and good practice can save a lot of time and confusion.

Although, Linux filename syntax is very flexible there will be times when files will be used on multiple operat-
ing systems, hence, the syntax rules of the more restrictive operating system will prevail.

Some operating systems allow spaces within the file name e.g. "My documents". Since the Linux shells use
white space (one or more spaces or tabs) as the delimiter if you transferred the file to a Linux machine, and then
tried to issue the following command:

sa101$ cat My documents

the shell would look for a file called "My" and failing to find it, would issue an error message.

sa101$ cd eg
sa101$ ls -l M*
-rw-r--r-- 1 fulford fulford 0 Dec 7 01:58 My documents
sa101$ cat My documents
cat: My: No such file or directory
cat: documents: No such file or directory

If we must accessMy documents on a UNIX / Linux file system we can either use the escape character (\)
before the intermediate space or place the whole file name in single or double quotes.

sa101$ ls -l M*
-rw-r--r-- 1 fulford fulford 0 Dec 7 01:58 My documents
sa101$ cat My\ documents
sa101$ cat M "My documents"
sa101$ cat ’My documents’

13.5. Filecontents

If we want to know the content type of a file the command is

sa101$ file <filename>

Te xt files can be examined with a variety of tools. Pagers format text files and input streams for viewing on
screen. The default BSD pager wasmore. The standard Linux pager has becomeless, named by analogy with
more, with the old sore that "less is more" in mind.

The default systems V pager for many years waspg.

All three are now commonly available in Linux.

To quickly check the first few lines in a file, perhaps to see the source code control statements, copyright state-
ments etc. we can usehead.

Page 60

City LinUX The Systems Admin’s Introduction to Linux (S13) Linux file store

To see the end of a file usetail .

The commandtail has a particularly useful flag-f which when used causes the program when it reaches the end
of file to wait for further input. This allows us to monitor log files e.g.

tail -f /var/log/syslog

13.6. Linux Filestore protection.

Each file, directory and device has protection attributes in 3 categories; user (u), group (g) and others (o).

Each category has 3 modes of access: read (r), write (w) and execute / search (x), protection information
given by long listing (ls -l), change protection (mode) withchmod. For basic modes 9 bits are used which
can either be on (1) or off (0).

user group others
r w x r w x r w x
1 1 0 1 1 0 0 0 0

In the example above the permission are:

symbolic ug=rw
octal 660
binary 110110000
decimal 432

The easy way to work out the octal value is to treat each set of 3 permissions as a separate binary number so that
the 3 columns equal 4,2 and 1 from left to right.

sa101$ export PS1=sa101$
sa101$ touch demo;ls -l demo
-rw-r--r-- 1 fulford operators 0 Nov 25 07:32 demo
sa101$ chmod 777 demo;ls -l demo
-rwxrwxrwx 1 fulford operators 0 Nov 25 07:32 demo
sa101$ chmod 664 demo;ls -l demo
-rw-rw---- 1 fulford operators 0 Nov 25 07:32 demo
sa101$ chmod 660 demo;ls -l demo
-rw-rw---- 1 fulford operators 0 Nov 25 07:32 demo
sa101$ chmod o+r demo;ls -l demo
-rw-rw-r-- 1 fulford operators 0 Nov 25 07:32 demo

The long file listing also shows the owner and the group assignment of the file, in the examples above fulford
andoperators respectively.

The owner of the file can change the group to another group of which they are a member. An ordinary user can-
not give away ownership of a file.The root user can reassign the ownership and group of any file to any owner
or group.

E.g.

sa101$ touch demo;ls -l demo
-rw-rw-r-- 1 fulford fulford 0 Nov 25 08:09 demo
sa101$ chgrp bin demo;ls -l demo
chgrp: changing group of ’demo’: Operation not permitted
-rw-rw-r-- 1 fulford fulford 0 Nov 25 08:09 demo
sa101$ grep ˆbin /etc/group
bin:x:1:root,bin
sa101$ chgrp operator demo;ls -l demo
-rw-rw-r-- 1 fulford operator 0 Nov 25 08:09 demo
sa101$ grep operator /etc/group
operator:x:503:fulford, smith

Page 61

(S13) Linux file store The Systems Admin’s Introduction to Linux City LinUX

13.7. Linux file types.

If we take a long file listing the file type is shown on the left of each output line.

-rwx------ 1 fulford fulford 9822 Nov 15 19:58 w1a.ms

file type

There are seven file types.

symbol type
- regular file
d directory
c character device
b block device
s Unix domain socket
p named pipe
l symbolic link

Ordinary or regular (-) files are files that are not directories or "special" files. These may be text files, binaries,
graphic images, sound files or any other regular file.

Directories (d) are the mechanism whereby groups of files are are collected together in a hierarchy of file
groups.

There are five types of special file.

In Linux / Unix all devices (with the exception of network devices) are handled as files and have a location in
the file system. The device file is used to apply access rights and direct operations to the appropriate device driv-
ers.

There are two types of device file, character special files (c) and block special files (b). Character devices pro-
vide for a serial stream of input or output. Block special devices allow random access.

Unix domain sockets (c) are special files used for inter process communication. Sockets are fully duplex capa-
ble, that is they allow two way communication through the file.

FIFO (first in, first out) files are named pipes (p). Namedpipes allow inter-process communication between
processes that exist in different user spaces. They can be created on demand anywhere in the file hierarchy.

Symbolic links (s) are files which reference another file. The file stores a text representation of the referenced
file’s path. The referenced path may be absolute or relative and in fact may not exist at all.

Symbolic links may be made between directories and may be made across file systems.

13.8. Exercise

sa101$ mkdir test
sa101$ cd test
sa101$ touch 310511 140611 300611 090512 120512 130512
sa101$ ls

Rename the files to produce a date ordered list with thels command.

sa101$ cat >main.c
#include <stdio.h>
main(_)
{ p rintf("Hello, World\n");
}
ˆd
sa101$ gcc main.c

Page 62

City LinUX The Systems Admin’s Introduction to Linux (S13) Linux file store

sa101$ file main.c a.out
sa101$./a.out
sa101$ file /bin/bash
sa101$ file /bin/sh

sa101$ pwd
/home/fulford/sa101
sa101$ mkdir eg;ls -ld eg
drwxr-xr-x 2 fulford fulford 4096 Nov 25 10:47 eg
sa101$ cd eg
sa101$ mkdir d
sa101$ ls -ld d
drwxr-xr-x 2 fulford fulford 4096 Nov 25 10:48 d
sa101$ chmod 000 d;ls -ld d
d--------- 2 fulford fulford 4096 Nov 25 10:48 d
sa101$ cd d
bash: cd: d: Permission denied
sa101$ chmod 100 d;ls -ld d
d--x------ 2 fulford fulford 4096 Nov 25 10:48 d
sa101$ cd d
sa101$ touch file1
touch: cannot touch ’file1’: Permission denied
sa101$ chmod 300 .;ls -ld .
d-wx------ 2 fulford fulford 4096 Nov 25 10:48 .
sa101$ touch file1;ls
ls: cannot open directory .: Permission denied
sa101$ sudo ls
file1

sa101$ sudo ls -l
total 0
-rw-r--r-- 1 fulford fulford 0 Nov 25 10:50 file1
sa101$ cat >file1
contents
ˆd
sa101$ cat file1
contents

sa101$ cd eg;ls -l
total 4
d-wx------ 2 fulford fulford 4096 Nov 25 10:50 d
sa101$ l touch f1
sa101$ link f1 f2;ls -l
total 4
d-wx------ 2 fulford fulford 4096 Nov 25 10:50 d
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f1
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f2

NB: The files f1 an f2 are identical. They are in fact the same file. We hav ecreated 2 directory entries for the
same file.

sa101$ ln -s f1 f3
sa101$ ls -l
total 4
d-wx------ 2 fulford fulford 4096 Nov 25 10:50 d
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f1
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f2
lrwxrwxrwx 1 fulford fulford 2 Nov 25 21:26 f3 -> f1

Page 63

(S13) Linux file store The Systems Admin’s Introduction to Linux City LinUX

Note the difference between the results ofln andln -s. In the second instance we create a new file with a sym-
bolic reference to the old file. If f3 is deleted the file f1 remains.

13.9. Exercise.

Try deleting f3 and take a new long listing.

Delete f1 or f2 and take a long listing.

Deleting the target file leaves broken symbolic links on the system.

Using the table below revise the material covered so far.

13.10. Tools and metanotation:

Commands Metanotation

cat concatenatefiles. &# file id

pg,more,less filepagers. ; command list separator

cut selectsections from each line of text. \ "escape" the next character

tail displaythe last lines of a file. || ORlist separate

if conditionalshell programming construct. && AND list separator

set readand write variables. | pipe

export namedvariables are exported to subshells. < redirect the input stream.

history displayrecent commands. > redirect the output stream.

ps reporta snapshot of current processes. ! initiate history substitution

bash bourneagain shell.

sh bourneshell.

grep getregular expression. Terminal Special characters

clear clearscreen ˆd end of input.

echo displaya line of test. ˆc signal2 (keyboard interrupt).

ed edita file.

vi (vim)visualscreen editor.

wc word count, counts words, lines and bytes.

uname -a print system information.

arch printmachine architecture.

whoami printeffective uid. File name expansion.

last printlist of logins from current wtmp file. * matches any sequence of

finger lookupuser information. characters.

date get(or set) time and date. ? matches any single character.

sudo changethe effective user id. [abc] matchesanyone of a, b or c.

man printthe manual pages. [a-z,A-Z] matchesany one alphabetic

info print the info documents. character.

apropos searchthe whatis database. [0-9] matchesany one numeric

ls list files. character.

mv move or rename files. {a,bc,def} matchesany of the enum-

cp copy files. eratedstrings.

rm remove files. \ disables metanotation for a

chown changefile owner (and or group). single character.

chgrp changefile group. ’a string’ disables metanotation within

chmod changemode (file permissions). quotes.

touch changefile timestamps. "a string" disables filename metanotation

link createsa directory link to another file. within double quotes.

ln makes a directory link or symbolic link.

find findfiles in directory tree.

diff report the difference between 2 text files.

file determinefile content type.

pwd printpresent working directory.

cd changecurrent working directory.

script starta sub shell and record all input & output.

chsh changeusers default shell.

Page 64

City LinUX The Systems Admin’s Introduction to Linux (S14) Shell programming-3

Section 14.
Shell programming 3.

"The most effective debugging tool is still careful thought, coupled with judiciously placed print
statements."

Brian W Kernighan in the paper Unix for Beginners 1979.

Page 65

(S14) Shell programming-3 The Systems Admin’s Introduction to Linux City LinUX

14. Shellprogramming 3.

14.1. Loopingconstructs.

Bash supports the looping flow controlsfor , select, case, while/ until andif .

NB. wherever a ";" appears in the description of a command’s syntax it may be replaced with one or morenew-
lines.

14.2. For

for name[[in [word...]]; do list; done

The list of words following in is expanded, generating a list of items. The variable name is set to each ele-
ment of thislist in turn, andlist is executed eachtime. If thein word is omitted, thefor command exe-
cuteslist once for each positional parameter that is set.The return status isthe exit statusof the last
command that executes. Ifthe expansion of the items following in results in an empty list, no commands
are executed, and the return status is 0.

E.g.

sa101$ cd eg;ls -l
total 4
drwx------ 2 fulford fulford 4096 Nov 26 10:51 d
-rw-r--r-- 2 fulford fulford 0 Nov 26 10:58 f1
-rw-r--r-- 2 fulford fulford 0 Nov 26 10:58 f2
lrwxrwxrwx 1 fulford fulford 2 Nov 26 10:49 f3 -> f1
sa101$ cat >movefiles
#!/bin/sh
for file in f*;do

if [-f $file];then
mv $file d

fi
done
ˆd
sa101$ chmod 755 movefiles
sa101$./movefiles
sa101$ ls
d f 3
sa101$ ls -l d
total 4
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f1
-rw-r--r-- 2 fulford fulford 0 Nov 25 21:25 f2
-rw-r--r-- 1 fulford fulford 9 Nov 25 10:51 file1
sa101$ ls -l
total 4
drwx------ 2 fulford fulford 4096 Nov 26 10:51 d
lrwxrwxrwx 1 fulford fulford 2 Nov 26 10:49 f3 -> f1

Note that the symbolic link file f3 now points to a none existent f1 in the current directory.

Page 66

City LinUX The Systems Admin’s Introduction to Linux (S14) Shell programming-3

14.3. Select.

selectname[in word ...] ; do list ; done

The list of words following in is expanded, generating a list of items. The set of expanded words is
printed on the standard error, each preceded by a number. If the in word is omitted, the positional param-
eters are printed.

The PS3 prompt is then displayed and a line read from the standard input. If the line consists of a number
corresponding to one of the displayed words, then the value ofnameis set to that word. If the line is
empty, the words and prompt are displayedagain. If EOF is read, the command completes. Any other
value read causes name to be set to null. The line read is saved in the variable REPLY. The list is executed
after each selection until a break command is executed.

The exit status of select is the exit status of the last command executed in list, or zero if no commands
were executed.

E.g.

sa101$ pwd
/fulford/sa101
sa101$ cd eg
sa101$ ls
d f1 f2 f 3
sa101$ cat >f3
A t ext file accessed by a symbolic link.
ˆd
sa101$ select file in *;do head $file;done
1) d
2) f1
3) f2
4) f3
#? 4
A t ext file accessed by a symbolic link.
#?
ˆd

14.4. Case.

caseword in [[(] pattern[| pattern] ...) list ;;] ... esac

A casecommand first expandsword and tries to match it against each pattern in turn, using the same
matching rules as for pathname expansion. Theword is expanded using tilde expansion, parameter and
variable expansion, arithmetic substitution, commandsubstitution, process substitution and quote
removal. Each pattern examined is expanded using tilde expansion, parameter and variable expansion,
arithmetic substitution, command substitution, and process substitution. If the shell optionnocasematch
is enabled, the match is performed without regard to the case of alphabetic characters. When a match is
found, the correspondinglist is executed. If the ;; operator is used, no subsequent matches are attempted
after the first pattern match.

Using ;& in place of ;; causes execution to continue with thelist associated with the next set of patterns.
Using ;;& in place of ;; causes the shell to test the next patternlist in the statement, if any, and execute any
associatedlist on a successful match. The exit status is zero if no pattern matches. Otherwise, it is the exit
status of the last command executed inlist.

Page 67

(S14) Shell programming-3 The Systems Admin’s Introduction to Linux City LinUX

E.g.

sa101$ cat eg_select.sh
#!/usr/bin/bash
select colour in red amber green ;do

case $colour in
green) echo "total fat <= 3%";;
red) echo "total fat > 3% < 0%";;
amber) echo "total fat => 20% " ;;

esac
done

14.5. If.

if list; thenlist; [elif list; thenlist;] ... [elselist;] fi

The if list is executed. If its exit status is zero, thethen list is executed. Otherwise, eachelif list is exe-
cuted in turn, and if its exit status is zero, the correspondingthen list is executed and the command com-
pletes. Otherwise, theelselist is executed, if present. The exit status is the exit status of the last command
executed, or zero if no condition tested true.

E.g.

sa101$ cat autofs-chk
#!/usr/bin/bash
name :autofs-chk
##
file=/var/run/autofs-running
if [-f $file];then

pid=$(<$file)
echo "automounter last started with pid $pid"
exit 0

else
echo "$0: can’t find $file. Perhaps autofs not started." >&2

exit 1
fi

NB. root privileges will be need to access /var/run/autofs-running

14.6. While.

while list; do list; done
until list; do list; done

Thewhile command continuously executes thedo longlistas the last command in anlistreturnsuntil com-
mand is identical to thewhile command, except that the test is negated; thedo list is executed as long as
the last command in alistreturns of thewhile anduntil commands is the exit status of the lastdo list com-
mand executed, or zero if none was executed.

E.g.

The next script looks for the directories d00, d01, d02 and d03 and creates any that are missing.

Page 68

City LinUX The Systems Admin’s Introduction to Linux (S14) Shell programming-3

sa101$ cat msngdir
#!/usr/bin/bash
r elease : 1.2
f ilename : msngdir
author : fulford
#
##
n=0
dir=../eg
while [‘find $dir -name d0\? -type d| wc -l‘ -lt 4]; do

[-d $ dir/d0$n] || mkdir $dir/d0$n
n=‘expr $n + 1‘
read

done
ls -l $dir

14.7. Online examples.

There are available on line a number of administrative shell scripts by the author. These scripts do not directly
relate to this course but may well be found useful when looking for particular scripting techniques.

The scripts may be found at "http://www.citylinux.com/linux/scripts/scripts.php".

14.8. Exercises

for :

Write a bash shell script using thefor loop to take a list of five workspaces or directory names, check if
they exist off the current directory and create those that do not. After each directory is created make it the
current working directory and touch a file named "done" before returning to your starting directory.

Put the five directory names in a file calleddirs, before you start scripting.

select;

Write a bash shell script to present 3 numbered menu options.Offer comments to the user on the validity
of their choices. Include a option to end the current session without usingend of input.

case;

Use thecasestatement in a script that can be called with the following option flags.

Option meaning
-v verbose mode.
-V print version number and exit.
-h print thecommand syntax.

if :

Write a shell script that searches/var/log for files larger than 10MB which have not been modified for
more than 30 days. If no files are found write an error message to stderr.

while

Rewrite thecasescript above using while to test for remaining positional parameters until all have been
processed.

Using the next tools and metanotation table revise the material covered on the course so far.

Page 69

(S14) Shell programming-3 The Systems Admin’s Introduction to Linux City LinUX

14.9. Tools and metanotation:

Commands Metanotation

cat concatenatefiles. &# file id

pg,more,less filepagers. ; command list separator

cut selectsections from each line of text. \ "escape" the next character

tail displaythe last lines of a file. || ORlist separate

if conditionalshell programming construct. && AND list separator

set readand write variables. | pipe

export namedvariables exported to subshells. < redirect the input stream.

history displayrecent commands. > redirect the output stream.

ps reporta snapshot of current processes. ! initiate history substitution

bash bourneagain shell.

sh bourneshell.

grep getregular expression. Terminal Special characters

clear clearscreen ˆd end of input.

echo displaya line of test. ˆc signal2 (keyboard interrupt).

ed edita file.

vi (vim)visualscreen editor.

wc word count, counts words, lines and bytes.

uname -a print system information.

arch printmachine architecture.

whoami printeffective uid. File name expansion.

last printlist of logins from current wtmp file. * matches any sequence of

finger lookupuser information. characters.

date get(or set) time and date. ? matches any single character.

sudo changethe effective user id. [abc] matchesanyone of a, b or c.

man printthe manual pages. [a-z,A-Z] matchesany one alphabetic

info print the info documents. character.

apropos searchthe whatis database. [0-9] matchesany one numeric

ls list files. character.

mv move or rename files. {a,bc,def} matchesany of the enu-

cp copy files. eratedstrings.

rm remove files. \ disables metanotation for a

chown changefile owner (and or group). single character.

chgrp changefile group. ’a string’ disables metanotation within

chmod changemode (file permissions). quotes.

touch changefile timestamps. "a string" disables filename metanotation

link createsa directory link to another file. within double quotes.

ln makes a directory link or symbolic link.

find findfiles in directory tree.

diff report the difference between 2 text files.

file determinefile content type.

pwd printpresent working directory.

cd changecurrent working directory.

script starta sub shell and record all input & output.

select menudriven flow control.

case/while/until conditionalcontrol loops in the shell.

chsh changea users default shell.

Page 70

City LinUX The Systems Admin’s Introduction to Linux (S15) File management

Section 15.

File system
management.

"A multithreaded file system is only a performance hack."

Andrew Tanenbaum to Linus Torvalds.

Page 71

(S15) File management The Systems Admin’s Introduction to Linux City LinUX

15. Filesystem management.

15.1. Checkingfile system capacity.

In order to find the current disk usage use the commanddf.

sa101$ df -Pk

Filesystem 1024-blocks Used Available Capacity Mounted on

/dev/sdb1 5226072 4551596 409004 92% /

/dev/sda2 1039748 823372 163560 84% /var

/dev/sdc5 120161140 64612768 49444480 57% /u

/dev/sdc6 120201332 10466152 103629280 10% /usr

tmpfs 246556 12 246544 1% /dev/shm

The output shows the device, the total capacity of the disk, the disk space used, the disk space that remains
available, the proportion of disk space that is already in use (expressed as a percentage) and the current mount
point.

Thedf command does not show information regarding any devices that have not been mounted.

A typical systems administration script would run thedf command and send an alert to the systems administra-
tion if the "Capacity" exceeded a certain threshold. Determining what that threshold should be depends on many
factors. The threshold may be higher for a system storing a few slow growing files than that which might be set
on a more volatile system where the rate of increase might vary very quickly.

If only a relatively short retention period is required for the stored data then timely deletion of redundant data
may be all that is needed. Where the filestore is used for information that is required in perpetuity it may be nec-
essary to expand the available storage. If this involves the procurement of additional hardware the lead times to
resolution of capacity constraints may be longer.

The awk command processes text data streams as lines and fields and is ideal for extracting this kind of infor-
mation.

Once we have our script for checking the remaining file system capacity and raising the necessary alerts the
process can run to an appropriate schedule using thecron daemon.

15.2. Findingthe data.

If a file system has unexpectedly exceeded our capacity threshold, it will be necessary to find out where in the
file hierarchy the problem is occurring.

Thedu (disk usage) command will give us the disk usage in each directory.

Let us suppose that /var is being reported as 70% full and we need urgently to identify the cause of the problem

Page 72

City LinUX The Systems Admin’s Introduction to Linux (S15) File management

sa101$ for d in ‘find /var -type d -maxdepth 1‘;do du -sk $d;done
821340 /var
10728 /var/spool
16 /var/lock
188 /var/run
28 /var/yp
24372 /var/named
15548 /var/cache
16 /var/state
64 /var/db
1300 /var/man
137076 /var/tmp
63348 /var/lib
4 / var/empty
13940 /var/www
542180 /var/log
8 / var/games
204 /var/lost+found
1772 /var/squirrel
10508 /var/data
32 /var/local
4 / var/nmbd
sa101$ exit

All of these results look well within expectations, but if we identified a directory with exceptional usage investi-
gation would continue. Often with /var a sudden increase in disk usage is caused by the logging of repeated iter-
ations of the same error.

In relatively small systems identifying target directories for investigation may be done by inspection, on larger
systems or when dealing with multiple systems, it may be preferable to script the inspection process.

15.3. Partition tools.

The tools to be used for creating, deleting, shrinking or growing file systems are various and selection will
depend on the local hardware and software build.

Modern Linux systems are often built with software RAID employing metadisks and logical volumes. Hardware
RAID built on either local devices or on a SAN may also be used.

Even on a relatively small desktop host with a single local hard disk device, there are a number of alternatives
for managing the partitions.

The most familiar is likely to befdisk a tool that shares its origin with the world of Microsoft DOS. Usually
used interactively with a text based displayfdisk, can be used to list partitions on a known device.

E.g.

sa101$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb1 5226072 4567884 392716 93% /

/dev/sda2 1039748 822860 164072 84% /var

/dev/sdc5 120161140 64616312 49440936 57% /u

/dev/sdc6 120201332 10466152 103629280 10% /usr

tmpfs 246556 12 246544 1% /dev/shm

Page 73

(S15) File management The Systems Admin’s Introduction to Linux City LinUX

sa101$ for d in a b c ;do fdisk -l /dev/sd$d;done

Disk /dev/sda: 1083 MB, 1083801600 bytes

64 heads, 63 sectors/track, 525 cylinders, total 2116800 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x7d99c20d

Device Boot Start End Blocks Id System

/dev/sda1 63 4031 1984+ 82 Linux swap

/dev/sda2 4032 2116799 1056384 83 Linux

Disk /dev/sdb: 6448 MB, 6448619520 bytes

255 heads, 63 sectors/track, 784 cylinders, total 12594960 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0xffffffff

Device Boot Start End Blocks Id System

/dev/sdb1 * 63 10618964 5309451 83 Linux

/dev/sdb2 10618965 12594959 987997+ 82 Linux swap

Disk /dev/sdc: 250.1 GB, 250059350016 bytes

255 heads, 63 sectors/track, 30401 cylinders, total 488397168 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0xe7495dc5

Device Boot Start End Blocks Id System

/dev/sdc1 63 488392064 244196001 5 Extended

/dev/sdc5 126 244155869 122077872 83 Linux

/dev/sdc6 244155933 488392064 122118066 83 Linux

sa101$ exit

Next up is cfdisk a curses based interactive partitioning tool popular in Linux distributions for some years.
cfdisk does not have command line options so is of little use to us here.

A tool which can be used entirely from the command line is scriptedfdisk or sfdisk.

With a confident hand on the tillersfdisk can be used to reconfigure/destroy your filesystems on the fly.

Thesfdisk is particularly good at finding and listing all block devices. Unfortunately this process is also unbear-
ably slow and may hang if drives (e.g. floppy devices) are installed but no media is present.

For disk partitions larger than 2TBfdisk, cfdisk andsfdisk will need to be discarded (for the present) in favour
of a GPT aware tool. The standard for this in recent years has beenparted. which can also list devices at the
command line if you have the time to spare.

parted -l
......

A better option for listing block devices is the one trick ponylsblk.

sa101$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
fd0 2:0 1 4K 0 disk
sda 8:0 0 1G 0 disk
|-sda1 8:1 0 2M 0 part [SWAP]
‘-sda2 8:2 0 1G 0 part /var
sdb 8:16 0 6G 0 disk
|-sdb1 8:17 0 5.1G 0 part /

Page 74

City LinUX The Systems Admin’s Introduction to Linux (S15) File management

‘-sdb2 8:18 0 964.9M 0 part [SWAP]
sr0 11:0 1 1024M 0 rom
sdc 8:32 0 232.9G 0 disk
|-sdc1 8:33 0 1K 0 part
|-sdc5 8:37 0 116.4G 0 part /u
‘-sdc6 8:38 0 116.5G 0 part /usr
sdd 8:48 0 232.9G 0 disk

By default Ubuntu uses a utility calledpartman at install time to partition the disk.Thepartman tool provides
an interface toparted which actually does the on disk partitioning.

15.4. Filetransfers and archiving.

Whilst the primary use oftar , cpio, dd anddump is for creating archives and backups, these tools may also be
used for quickly transferring data to alternative devices either locally or resident on other hosts.

The tape archive and retrieval tool tar is one of those tools that has been written off many times by the new kids
on the block but always makes a come back. It is powerful, flexible and universal. Copying to tape, across physi-
cal and logical devices and across the network are all readily achieved with tar.

Becausetar processes a bit stream and writes to a file with its own tar format, it is able to backup and retrieve
not just across Linux distributions but across many different operating systems.

The use oftar to package software is near ubiquitous. The required files for a software installation together with
the installation instructions and documentation are usually bundled together and compressed with one of the
GNU file compression tools, most commonlygzip. The resultant bundle is called atar ball and is often named
in a similar fashion to this:

softwarepackage_1.0.1-1.tar.gz
appmenu-qt_0.2.6-1ubuntu1.debian.tar.gz

The Ubuntu Linux distribution follows Debian in the use oftar to create bundles that are downloaded,
unpacked and installed using the package management toolapt-get.

A common use oftar is to rapidly recreate a directory tree on another file system either locally or across the
LAN.

sa101$ tar cf - . |(cd /new/file/system;tar xf -)

NB. We can echo the path name to the screen both when creating the archive and on extraction with the-v
option. Writing to screen is relatively very slow, it is preferable to avoid this when creating substantial archives.
If a record of the files being processed is required, use-v with redirection to a file. Do note that the verbose list-
ing is written tostandard error, not standard out, so the command would resemble the following:

tar cvSf /dev/st0 . 2>/var/log/backup‘date +%d‘

Tar used not to be good at handling sparse files but recent versions have the -S/ S option which causestar to
handle sparse files properly. It is good practice to always use the-S/ S option.

It is quite usual to combine the use oftar with one of the file compression utilities such asgzip, bzip2 (better
compression but with a big speed penalty) orzcat / compress.

The-z flag tellstar to pipe the output throughgzip.

15.5. dump/ restore.

Sparse files are handled by default when usingdump, with which, whole filesystems can be backed up and ar-
chives can be created over multiple volumes.

Therestoreutility provides both command line and interactive tools to restore fromdump files.

The downside is that the tools are filesystem specific. Backups taken on one system may not be recoverable on
another sometimes not even across upgrades on the same Linux distribution.

15.6. dd- device to device

Thedd command will copy from files from one device to another creating exact byte level replicas. The syntax
is rather different from most UNIX / Linux commands in that it uses equates on the command line e.g.

Page 75

(S15) File management The Systems Admin’s Introduction to Linux City LinUX

dd if=/dev/sda of=/dev/sdb

As may be immediately implieddd can create clones of block devices and is commonly used in IT labs to image
disks, clone DVDs et al. There are number of other flags indd that allow the fine tuning of the way the copy is
created, including the block size, no of bytes copied etc. These controls allow dd to be used in combination with
other software tools to optimise network transfers, create Master Boot Record copies and other technical tricks.

sa101# tar cSf - /usr|dd bs=4096 |\
ssh root@archives (cd /arc/hostname1;dd bs=4096|tar xf -)

15.7. rsyncand rdist

Identical copies of files can be maintained over multiple hosts usingrdist.

The file mode, group, owner and mtime can be preserved. Running programs can be updated usingrdist .

Thersync utility can update a remote file set by just copying the data required to synchronise with the set on the
local host.

15.8. Otheroptions.

There are a number of other backup utilities available with Ubuntu and other Linux distributions. Most appear to
be graphical user interfaces to well known tools liketar .

KBackup, File Backup Manager, Lucky Backup andBack in time are possibilities you may want to check
out should your life be longer than that of most system admins.

15.8.1. DejaDup.

A graphical front end torsync. The maintainer Michael Terry does not recommend thatDeja Dup is used for
maintaining data across distribution upgrades. See "http://mterry.name/log/tag/deja-dup/"

15.9. Exercises.

Create a recursive compressed tar backup of the/etcdirectory.

Create a dump file archive of /etc.

/sbin/dump -0u -f /var/backup/etc_dump‘date +%d‘

Userestore -i to find and extract /etc/mail/aliases.

Using the next tools and metanotation table revise the material covered on the course so far.

Page 76

City LinUX The Systems Admin’s Introduction to Linux (S15) File management

15.10. Tools and metanotation:

Commands Metanotation

cat concatenatefiles. &# file id

pg,more,less filepagers. ; command list separator

cut cutsections from each line of text. \ "escape" the next character

tail displaythe last lines of a file. || ORlist separate

if shell programming construct. && AND list separator

set readand write variables. | pipe

export export variables to subshells. < redirect the input stream.

history displayrecent commands. > redirect the output stream.

ps snapshotof current processes. ! initiate history substitution

bash bourneagain shell.

sh bourneshell.

grep getregular expression. Terminal Special characters

clear clearscreen ˆd end of input.

echo displaya line of test. ˆc signal2 (keyboard interrupt).

ed edita file.

vi (vim)visualscreen editor.

wc word count.

uname -a print system information.

arch printmachine architecture.

whoami printeffective uid. File name expansion.

last printlist of logins from wtmp file. * matches any sequence of

finger lookupuser information. characters.

date get(or set) time and date. ? matches single character.

sudo changethe effective user id. [abc] matchesanyone of a, b or c.

man printthe manual pages. [a-z,A-Z] matchesany one alphabetic

info print the info documents. character.

apropos searchthe whatis database. [0-9] matchesany one numeric

ls list files. character.

mv move or rename files. {a,bc,def} matchesany of the enu-

cp copy files. eratedstrings.

rm remove files. \ disables metanotation for a

chown changefile owner (and or group). single character.

chgrp changefile group. ’a string’ disables metatnotation within

chmod changemode (file permissions). quotes.

touch changefile timestamps. "a string" disables filename meta-

link createsa directory link to another file. notaion within double quotes.

ln makes a direct or symbolic link.

find findfiles in directory tree.

diff report the difference between 2 files.

file determinefile content type.

pwd printpresent working directory.

cd changecurrent working directory.

script starta sub shell and record input & output.

select menudriven flow control.

case/while/until conditionalcontrol loops in the shell.

chsh changeusers default shell.

tar tapearchive & retrieval.

dump/restore backupand restore utility.

dd device to device copy.

df diskfree.

du diskusage.

fdisk / cfdisk partition a hard disk device.

parted / sfdisk

Page 77

(S15) File management The Systems Admin’s Introduction to Linux City LinUX

Page 78

City LinUX The Systems Admin’s Introduction to Linux (S16) Process control

Section 16.
Process Control.

"All stable processes we shall predict. All unstable processes we shall control."

John von Neumann.

Page 79

(S16) Process control The Systems Admin’s Introduction to Linux City LinUX

16. Linux process control.

Theprocessis one of the fundamental abstractions in Unix/Linux operating systems.A process is a program in
execution. It consists of the executing program code, a set of resources such as open files, internal kernel data,
an address space, one or more threads of execution and a data section containing global variables. Every process
running on a Linux host has aprocess id(entity).

Processes are managed by the kernel.

The commandps lists the status of the current processes.

sa101$ ps

PID TTY TIME CMD

24837 pts/5 00:00:00 bash

24839 pts/5 00:00:00 ps

sa101$ ps -af

UID PID PPID C STIME TTY TIME CMD

fulford 4284 3850 0 Dec04 pts/0 00:12:07 terminal

fulford 4288 1 0 Dec04 pts/0 00:00:00 dbus-launch --autolaunch efe6149

fulford 4291 4284 0 Dec04 pts/0 00:00:00 gnome-pty-helper

fulford 4391 4389 0 Dec04 pts/3 00:01:15 gv

fulford 18218 3850 0 Dec09 pts/0 00:00:02 alpine

fulford 20160 23761 1 Dec09 pts/4 00:06:25 /usr/lib/firefox-4.0/firefox-bin

fulford 21621 20160 1 Dec09 pts/4 00:05:27 /usr/lib/firefox-4.0/plugin-cont

fulford 22635 3864 0 Dec06 pts/1 00:00:00 man hier

fulford 22638 22635 0 Dec06 pts/1 00:00:00 sh -c (cd "/usr/share/man" && (e

fulford 22639 22638 0 Dec06 pts/1 00:00:00 sh -c (cd "/usr/share/man" && (e

fulford 22643 22639 0 Dec06 pts/1 00:00:00 /usr/bin/less -is

fulford 24552 4391 0 Dec09 pts/3 00:00:13 gs -sDEVICE=x11 -dTextAlphaBits=

fulford 24576 4292 0 Dec09 pts/2 00:00:00 vi proccntrl.ms

fulford 24835 24576 0 00:05 pts/2 00:00:00 script

fulford 24836 24835 0 00:05 pts/2 00:00:00 script

fulford 24841 24837 0 00:05 pts/5 00:00:00 ps -af

Note that the snapshot generated by thepscommand includesps itself.

Each process is run with a user identityuid, when the-f flag is used this is listed as the first field of each line of
output (other than the first line which gives a heading to each field in the subsequent lines).

The UID may be the UID of the user invoking the process or it maybe set using the file ownership and a set user
id (suid) bit in the file permissions.

Each process has a unique reference number called theprocess idand a parent process id, which identifies the
process from which it was invoked.

All processes can be traced back to theinit process or process id 1.

sa101$ ps -f

UID PID PPID C STIME TTY TIME CMD

fulford 24986 24985 0 00:22 pts/5 00:00:00 bash -i

fulford 24987 24986 0 00:22 pts/5 00:00:00 ps -f

sa101$ ps -fp 24985

UID PID PPID C STIME TTY TIME CMD

fulford 24985 24984 0 00:22 pts/2 00:00:00 script

sa101$ ps -fp 24984

UID PID PPID C STIME TTY TIME CMD

fulford 24984 24861 0 00:22 pts/2 00:00:00 script

sa101$ ps -fp 24861

UID PID PPID C STIME TTY TIME CMD

fulford 24861 4292 0 00:08 pts/2 00:00:00 vi proccntrl.ms

sa101$ ps -fp 4292

UID PID PPID C STIME TTY TIME CMD

fulford 4292 4284 1 Dec04 pts/2 01:24:39 bash

sa101$ ps -fp 4284

Page 80

City LinUX The Systems Admin’s Introduction to Linux (S16) Process control

UID PID PPID C STIME TTY TIME CMD

fulford 4284 3850 0 Dec04 pts/0 00:12:10 terminal

sa101$ ps -fp 3850

UID PID PPID C STIME TTY TIME CMD

fulford 3850 3848 0 Dec04 pts/0 00:00:00 bash

sa101$ ps -fp 3848

UID PID PPID C STIME TTY TIME CMD

fulford 3848 3843 0 Dec04 ? 00:00:01 xterm -sb

sa101$ ps -fp 3843

UID PID PPID C STIME TTY TIME CMD

fulford 3843 3828 0 Dec04 ? 00:01:37 wmaker --for-real

sa101$ ps -fp 3828

UID PID PPID C STIME TTY TIME CMD

fulford 3828 2269 0 Dec04 ? 00:00:00 wmaker

sa101$ ps -fp 2269

UID PID PPID C STIME TTY TIME CMD

root 2269 2259 0 Dec04 ? 00:00:00 -:0

sa101$ ps -fp 2259

UID PID PPID C STIME TTY TIME CMD

root 2259 1 0 Dec04 ? 00:00:00 /usr/bin/kdm -nodaemon

sa101$ ps -fp 1

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 2012 ? 00:00:40 init [4]

16.1. Background processes.

Programs can be invoked as background processes by appending the& character to the command.

In response the shell

• prints a job number (in square brackets) and the PID,

• prompts for further input without waiting for the process to complete,

• disconnects STDIN from the terminal device,

• does not disconnect STDOUT or STDERR from the terminal.

We can bring a job back to the foreground with thefg command,

sa101$ find / -name impossible.file.name 2>/dev/null &

[1] 25199

sa101$ ps

PID TTY TIME CMD

25197 pts/5 00:00:00 bash

25199 pts/5 00:00:00 find

25200 pts/5 00:00:00 ps

sa101$ jobs

[1]+ Running find / -name impossible.file.name 2> /dev/null&

sa101$ fg

find / -name impossible.file.name 2> /dev/null

and push it back into the background with the terminal metacharacterˆZ.

ˆZ

[1]+ Stopped find / -name impossible.file.name 2> /dev/null

sa101$ bg

[1]+ find / -name impossible.file.name 2> /dev/null &

sa101$ kill %1

When a running process is pushed into the background it stops running.It can be scheduled to run again by
issuing thebg command.

Page 81

(S16) Process control The Systems Admin’s Introduction to Linux City LinUX

16.2. Terminating a process.

A process can be prematurely terminated by setting a signal flag for the kernel.

The list of signals available can be obtained with thekill -l command. Details of each signal are in the man
pages.

sa10$ man 7 signal

The signals commonly set by users are

SIGINT (2). Thisis the keyboard interrupt invoked by ˆC.

SIGTERM (15) which requests an orderly termination of process (termination of subprocesses, closing
files etc.) and

SIGKILL (9). SIGKILL is invoked with thekill -9 <pid> command. It should only be used in extremis
when other signals have failed.

Background jobs can be killed by using the job number prepended with the character% .

sa101$ find / -name afile -print 2>/dev/null|wc&

[1] 25631

sa101$ ps

PID TTY TIME CMD

25621 pts/5 00:00:00 bash

25630 pts/5 00:00:00 find

25631 pts/5 00:00:00 wc

25632 pts/5 00:00:00 ps

sa101$ kill %1

sa101$ ps

PID TTY TIME CMD

25621 pts/5 00:00:00 bash

25635 pts/5 00:00:00 ps

[1]+ Terminated find / -name afile -print 2> /dev/null | wc

NB. Killing the job%1 killed all the associated processes in the script.

16.3. Lookingfor process hogs.

When a process occupies an excessive number of CPU cycles it is called a "process hog".

A full listing of running processes should look something like this:

sa101$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Dec04 ? 00:00:05 init [4]

root 2 0 0 Dec04 ? 00:00:00 [kthreadd]

root 3 2 0 Dec04 ? 00:00:03 [ksoftirqd/0]

root 6 2 0 Dec04 ? 00:00:00 [migration/0]

root 7 2 0 Dec04 ? 00:00:00 [cpuset]

root 8 2 0 Dec04 ? 00:00:00 [khelper]

root 9 2 0 Dec04 ? 00:00:00 [kdevtmpfs]

root 10 2 0 Dec04 ? 00:00:00 [netns]

root 11 2 0 Dec04 ? 00:00:00 [kworker/u:1]

root 472 2 0 Dec04 ? 00:00:04 [sync_supers]

root 474 2 0 Dec04 ? 00:00:00 [bdi-default]

root 476 2 0 Dec04 ? 00:00:00 [kblockd]

root 559 2 0 Dec04 ? 00:00:00 [ata_sff]

root 566 2 0 Dec04 ? 00:00:00 [khubd]

root 572 2 0 Dec04 ? 00:00:00 [md]

root 674 2 0 Dec04 ? 00:00:00 [rpciod]

root 687 2 0 Dec04 ? 00:00:00 [khungtaskd]

root 693 2 0 Dec04 ? 00:00:12 [kswapd0]

root 757 2 0 Dec04 ? 00:00:00 [fsnotify_mark]

root 782 2 0 Dec04 ? 00:00:00 [nfsiod]

root 792 2 0 Dec04 ? 00:00:00 [jfsIO]

Page 82

City LinUX The Systems Admin’s Introduction to Linux (S16) Process control

root 793 2 0 Dec04 ? 00:00:00 [jfsCommit]

root 794 2 0 Dec04 ? 00:00:00 [jfsSync]

root 802 2 0 Dec04 ? 00:00:00 [xfs_mru_cache]

root 803 2 0 Dec04 ? 00:00:00 [xfslogd]

root 804 2 0 Dec04 ? 00:00:00 [xfsdatad]

root 805 2 0 Dec04 ? 00:00:00 [xfsconvertd]

root 807 2 0 Dec04 ? 00:00:00 [ocfs2_wq]

root 810 2 0 Dec04 ? 00:00:00 [user_dlm]

root 817 2 0 Dec04 ? 00:00:00 [glock_workqueue]

root 818 2 0 Dec04 ? 00:00:00 [delete_workqueu]

root 822 2 0 Dec04 ? 00:00:00 [gfs_recovery]

root 824 2 0 Dec04 ? 00:00:00 [crypto]

root 867 2 0 Dec04 ? 00:00:00 [kthrotld]

root 996 2 0 Dec04 ? 00:00:00 [cciss_scan]

root 1015 2 0 Dec04 ? 00:00:00 [fc_exch_workque]

root 1016 2 0 Dec04 ? 00:00:00 [fc_rport_eq]

root 1017 2 0 Dec04 ? 00:00:00 [fcoethread/0]

root 1019 2 0 Dec04 ? 00:00:00 [fnic_event_wq]

root 1105 2 0 Dec04 ? 00:00:00 [scsi_eh_2]

root 1108 2 0 Dec04 ? 00:00:00 [scsi_eh_3]

root 1112 2 0 Dec04 ? 00:00:00 [kworker/u:3]

root 1164 2 0 Dec04 ? 00:00:00 [scsi_eh_4]

root 1167 2 0 Dec04 ? 00:00:00 [scsi_eh_5]

root 1186 2 0 Dec04 ? 00:00:00 [exec-osm]

root 1192 2 0 Dec04 ? 00:00:00 [block-osm]

root 1316 2 0 Dec04 ? 00:00:10 [kjournald]

root 1366 1 0 Dec04 ? 00:00:00 /sbin/udevd --daemon

root 1422 2 0 Dec04 ? 00:00:00 [kpsmoused]

root 1802 2 0 Dec04 ? 00:00:00 [nfsd]

root 1803 2 0 Dec04 ? 00:00:00 [nfsd]

root 1807 2 0 Dec04 ? 00:00:00 [nfsd]

daemon 1851 1 0 Dec04 ? 00:00:00 /usr/sbin/atd -b 15 -l 1

root 1854 1 0 Dec04 ? 00:00:19 sendmail: accepting connections

smmsp 1857 1 0 Dec04 ? 00:00:00 sendmail: Queue runner@00:25:00

root 1874 1 0 Dec04 ? 00:01:49 /usr/local/bin/spamd -d --pidfil

apache 2150 2123 0 Dec04 ? 00:01:27 /usr/sbin/httpd -k start

apache 2151 2123 0 Dec04 ? 00:01:28 /usr/sbin/httpd -k start

apache 2152 2123 0 Dec04 ? 00:01:31 /usr/sbin/httpd -k start

root 2234 2136 0 Dec04 ? 00:00:00 /usr/sbin/smbd -D

root 2242 1 0 Dec04 ? 00:00:14 automount

root 2252 1 0 Dec04 ? 00:00:05 /usr/local/sbin/opendkim -p loca

root 2253 1 0 Dec04 tty1 00:00:00 /sbin/agetty 38400 tty1 linux

root 2254 1 0 Dec04 tty2 00:00:00 /sbin/agetty 38400 tty2 linux

root 2255 1 0 Dec04 tty3 00:00:00 /sbin/agetty 38400 tty3 linux

root 2256 1 0 Dec04 tty4 00:00:00 /sbin/agetty 38400 tty4 linux

root 2257 1 0 Dec04 tty5 00:00:00 /sbin/agetty 38400 tty5 linux

root 2263 2259 0 Dec04 tty7 00:41:22 /usr/bin/X -br :0 vt7 -nolisten

root 2266 2 0 Dec04 ? 00:00:00 [ttm_swap]

root 2269 2259 0 Dec04 ? 00:00:00 -:0

apache 2287 2123 0 Dec04 ? 00:01:39 /usr/sbin/httpd -k start

root 3753 1 0 Dec04 ? 00:00:00 /usr/sbin/console-kit-daemon --n

root 3818 1 0 Dec04 ? 00:00:00 /usr/libexec/polkitd --no-debug

fulford 28692 28691 0 12:00 pts/5 00:00:00 ps -ef

NB. Output edited and truncated.

Very few processes appear to register any CPU time at all. Of those that do only those that have been running for
days have registered more than a few seconds.

Page 83

(S16) Process control The Systems Admin’s Introduction to Linux City LinUX

If a second or third snapshot is taken and the CPU time on a process is rising rapidly, we may suspect a process
hog.

The commandtop can also assist in identifying process hogs.

sa101$ top

top - 12:12:16 up 5 days, 22:19, 6 users, load average: 0.04, 0.14, 0.46

Tasks: 151 total, 1 r unning, 149 sleeping, 1 s topped, 0 zombie

Cpu(s): 4.3%us, 0.7%sy, 0.0%ni, 93.9%id, 1.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 493116k total, 308328k used, 184788k free, 6328k buffers

Swap: 989972k total, 387928k used, 602044k free, 111664k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

28765 fulford 20 0 2828 1084 808 R 2.0 0.2 0:00.01 top

1 r oot 20 0 2008 4 0 S 0.0 0.0 0:05.63 init

2 r oot 20 0 0 0 0 S 0.0 0.0 0:00.14 kthreadd

3 r oot 20 0 0 0 0 S 0.0 0.0 0:03.15 ksoftirqd/0

6 r oot RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

7 r oot 0 -20 0 0 0 S 0.0 0.0 0:00.00 cpuset

8 r oot 0 -20 0 0 0 S 0.0 0.0 0:00.00 khelper

9 r oot 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs

10 root 0 - 20 0 0 0 S 0.0 0.0 0:00.00 netns

11 root 20 0 0 0 0 S 0.0 0.0 0:00.06 kworker/u:1

472 root 20 0 0 0 0 S 0.0 0.0 0:04.60 sync_supers

474 root 20 0 0 0 0 S 0.0 0.0 0:00.03 bdi-default

476 root 0 - 20 0 0 0 S 0.0 0.0 0:00.00 kblockd

559 root 0 - 20 0 0 0 S 0.0 0.0 0:00.00 ata_sff

566 root 20 0 0 0 0 S 0.0 0.0 0:00.01 khubd

572 root 0 - 20 0 0 0 S 0.0 0.0 0:00.00 md

674 root 0 - 20 0 0 0 S 0.0 0.0 0:00.00 rpciod

top - 12:12:19 up 5 days, 22:19, 6 users, load average: 0.04, 0.14, 0.45

16.4. Niceand renice.

Each process is allocated a run time priority level. The priority can be adjusted by usingnice when invoking the
command.

sa101$ /et nice find / -ctime 1000 >/var/tmp/olderfiles &

[1] 29408

sa101$ ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1 000 29402 29401 0 80 0 - 1 171 wait pts/9 00:00:00 bash

0 D 1 000 29408 29402 0 90 1 0 - 6 19 sleep_ pts/9 00:00:00 find

0 R 1 000 29409 29402 0 80 0 - 6 64 - pts/9 00:00:00 ps

Note that the nice value forfind is 10 which raises the priority from the default 80 to 90 (the higher the number
the lower the priority).

Although not much used by ordinary users these daysnice is still an important tool for administrators of busy
multi-user and multi-tasking systems where we want to start a reporting process in the background when time to
completion is not an issue.

The range of values that can be used to modify the priority is -20 to 19 (least favourable priority).

The nice value on a running process can be modified with therenice command. The systems administrator may
want to renice a suspect process pending further investigation or raise the priority of process that appears to be
hung, is not being rescheduled and hence is not seeing a termination signal.

sa101# nice find / -ctime +1000 >/var/tmp/oldfiles &

[2] 29472

sa101# ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 0 2 9394 29393 0 80 0 - 9 20 wait pts/8 00:00:00 bash

4 D 0 2 9467 29394 2 90 1 0 - 7 27 sleep_ pts/8 00:00:01 find

Page 84

City LinUX The Systems Admin’s Introduction to Linux (S16) Process control

1 D 0 2 9472 29394 0 80 0 - 9 20 sleep_ pts/8 00:00:00 bash

4 R 0 2 9473 29394 0 80 0 - 6 64 - pts/8 00:00:00 ps

sa101# renice +10 -p 29467

29467 (process ID) old priority 10, new priority 19

sa101# ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 0 2 9394 29393 0 80 0 - 9 20 wait pts/8 00:00:00 bash

4 D 0 2 9467 29394 1 99 1 9 - 7 27 sleep_ pts/8 00:00:01 find

4 R 0 2 9483 29394 0 80 0 - 6 64 - pts/8 00:00:00 ps

16.5. Checkingthe CPU.

The current overall systems activity can be monitored with thevmstat command.

sa101$ t vmstat 5 5

procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----

r b s wpd free buff cache si so bi bo in cs us sy id wa

0 0 375380 67912 9604 147524 2 3 12 21 81 7 2 4 1 94 1

0 0 375380 67912 9604 147528 0 0 0 0 206 636 4 1 95 0

0 0 375356 67788 9620 147528 0 0 0 2 2 218 646 4 1 95 0

0 0 375348 66796 9628 147528 0 0 0 1 3 213 639 4 1 95 0

0 0 375348 66796 9628 147528 0 0 0 2 2 210 641 4 1 95 0

On a well behaved system withno CPU constraint we should expect the cpu idle time to be approaching 100%.
The number of runnable processes in the queue should normally be 1 or 0. If we see the idle time consistently
fall below 60% and the number of runnable processes in the queue exceed 3 there are either badly behaved pro-
grams or inadequate CPU resources. There are likely to be performance issues if the situation is not soon
addressed.

NB. The first line ofvmstat output shows the averages since the last reboot and so using the options 5 5 gives
us the average to date and 4 snapshots 5 seconds apart. By setting an interval of 5 seconds we can negate the
impact ofvmstat itself on the report.

16.6. Exercise.

Usetop to find the processes on your host that are currently using the most CPU cycles.

Check the output ofvmstat and then try to raise the activity level by inv oking several background processes and
then running a couple offind commands (starting from the root directory with the output redirected to disk
files).

Takeps listings redirected to files and check the output ofvmstat once more.

Using the table below revise the commands you have learned in the Linux training course to date.

Page 85

(S16) Process control The Systems Admin’s Introduction to Linux City LinUX

16.7. Tools and metanotation:

Commands Metanotation

cat concatenatefiles. &# file id

pg,more,less filepagers. ; command list separator

cut extract sections from each line of text. \ "escape" the next character

tail displaythe last lines of a file. || ORlist separator

if conditionalshell programming construct. && AND list separator.

set readand write variables. | pipe.

export namedvariables exported to subshells. < redirect the input stream.

history displayrecent commands. > redirect the output stream.

ps reportsnapshot of current processes. ! initiate history substitution.

bash bourneagain shell. >> appendoutput to a file.

sh bourneshell.

grep getregular expression. Terminal Special characters

clear clearscreen ˆd end of input.

echo displaya line of text. ˆc signal 2 (keyboard interrupt).

ed edita file. ˆz put current job to background.

vi (vim)visualscreen editor.

wc word count.

uname -a print system information.

arch printmachine architecture.

whoami printeffective uid. File name expansion.

last printlist of logins from wtmp file. * matches any sequence of characters.

date get(or set) time and date. ? matches single character.

sudo changethe effective user id. [abc] matchesanyone of a, b or c.

man printthe manual pages. [a-z,A-Z] matches any one alphabetic character.

info print the info documents. [0-9] matches any one numeric character.

apropos searchthe whatis database. {a,bc,def} matches any of the enumerated strings.

ls list files. \ disables metanotation for a single character.

mv move or rename files. ’a string’ disables metatnotation within quotes.

cp copy files. "astring" disablesfilename metanotation within double quotes.

rm remove files.

chown changefile owner (and or group).

chgrp changefile group.

chmod changemode (file permissions).

touch changefile timestamps.

link createsa link to another file.

ln makes a direct or symbolic link.

find findfiles in directory tree.

diff report the difference between 2 files.

file determinefile content type.

finger lookupuser information.

Continued over page

Page 86

City LinUX The Systems Admin’s Introduction to Linux (S16) Process control

Mor e Commands

pwd printpresent working directory.

cd changecurrent working directory.

chsh changeusers default shell.

script start a sub shell and record input & output.

select menudriven flow control.

case/while/until conditional control loops in the shell.

tar tapearchive & retrieval.

dump/restore backupand restore utility.

dd device to device copy.

df diskfree.

du diskusage.

fdisk / cfdisk partition a hard disk device.

parted / sfdisk

jobs listjobs.

bg putjob in background.

fg bring job to foreground.

top interactive process reporting.

nice modifythe process priority.

renice changethe nice value on a running process.

kill set a signal for a running processes

Page 87

(S16) Process control The Systems Admin’s Introduction to Linux City LinUX

Page 88

City LinUX The Systems Admin’s Introduction to Linux (S17) Network configuration

Section 17.

Network
configuration.

"The Network is the Computer."

John Gage - Sun Microsystems 1984.

Page 89

(S17) Network configuration The Systems Admin’s Introduction to Linux City LinUX

17. Network configuration.

The command/sbin/ifconfig -acan be used to report on the network interface configuration and some basic sta-
tistics on the traffic through each interface.

17.1. Examples

bash-4.2# ifconfig -a

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.0.4 netmask 255.255.255.0 broadcast 10.0.0.255

inet6 fe80::207:e9ff:feb0:d042 prefixlen 64 scopeid 0x20<link>

ether 00:07:e9:b0:d0:42 txqueuelen 1000 (Ethernet)

RX packets 440521 bytes 231020833 (220.3 MiB)

RX errors 0 dropped 377 overruns 0 frame 0

TX packets 422575 bytes 139951096 (133.4 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 16436

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 0 (Local Loopback)

RX packets 216261 bytes 68171872 (65.0 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 216261 bytes 68171872 (65.0 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

With root privilegesifconfig can be used to set a number of parameters including the ip address, network mask,
and broadcast address. The interface can also be activated and deactivated.

17.2. Examples.

bash-4.2# ifconfig|grep eth

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

ether 00:07:e9:b0:d0:42 txqueuelen 1000 (Ethernet)

bash-4.2# ifconfig eth1

eth1: flags=4098<BROADCAST,MULTICAST> mtu 1500

inet 10.0.0.14 netmask 255.255.255.0 broadcast 10.0.0.255

ether 00:07:e9:b0:d0:42 txqueuelen 1000 (Ethernet)

RX packets 444377 bytes 233019619 (222.2 MiB)

RX errors 0 dropped 377 overruns 0 frame 0

TX packets 426914 bytes 140687564 (134.1 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

sa101$ ifconfig eth1 10.0.0.4 netmask 255.255.255.0 broadcast 10.0.0.255 up

sa101$ ifconfig

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.0.4 netmask 255.255.255.0 broadcast 10.0.0.255

inet6 fe80::207:e9ff:feb0:d042 prefixlen 64 scopeid 0x20<link>

ether 00:07:e9:b0:d0:42 txqueuelen 1000 (Ethernet)

RX packets 444442 bytes 233024071 (222.2 MiB)

RX errors 0 dropped 377 overruns 0 frame 0

TX packets 426964 bytes 140696016 (134.1 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 16436

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 0 (Local Loopback)

Page 90

City LinUX The Systems Admin’s Introduction to Linux (S17) Network configuration

RX packets 221358 bytes 70381542 (67.1 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 221358 bytes 70381542 (67.1 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

sa101$ ifconfig eth1 down

sa101$ ifconfig

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 16436

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 0 (Local Loopback)

RX packets 221376 bytes 70383294 (67.1 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 221376 bytes 70383294 (67.1 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

sa101$ ifconfig eth1 up

sa101$ ifconfig eth1

eth1: flags=4098<UP,BROADCAST,MULTICAST> mtu 1500

inet 10.0.0.4 netmask 255.255.255.0 broadcast 10.0.0.255

ether 00:07:e9:b0:d0:42 txqueuelen 1000 (Ethernet)

RX packets 444451 bytes 233024695 (222.2 MiB)

RX errors 0 dropped 377 overruns 0 frame 0

TX packets 426970 bytes 140697228 (134.1 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Page 91

(S17) Network configuration The Systems Admin’s Introduction to Linux City LinUX

Page 92

City LinUX The Systems Admin’s Introduction to Linux (S18) User accounts

Section 18.
User accounts.

"UNIX is user-friendly. It’s just very selective about who it’s friends are"

Anonymous.

Page 93

(S18) User accounts The Systems Admin’s Introduction to Linux City LinUX

18. Useraccounts.

Every user in UNIX / Linux has a numeric identityand a unique symbolic name. A table of these accounts is
maintained in the/etcdirectory and is known as/etc/passwd.

18.1. Theroot user.

The first user enumerated in the table isroot and has the numeric id0. The root user is thesuperuserand has
unrestricted access to the system.

Numeric IDs are not required to be unique (not even 0) although this is both good and usual practice. Using the
sameUID for two or more symbolic names effectively creates a user alias. It would be possible therefore to cre-
ate an account called "Administrator" with root privileges, perhaps in an effort to ease the learning curve for
administrators from other systems.

The tactic is likely to backfire however, for although it would give us a record of the initial login by "Adminis-
trator", from that point on the user would be identified as root, as all the tools I know of, use the symbolic name
associated with the first match for that id that is found in the table.For id zero this will always beroot (assum-
ing theroot id is present and in its usual place at the head of the passwd table).

It is far better to configure all logins with unique ids and then employ sudo to allocate root privileges in a more
controlled manner.

All users other than root are of the same status in respect of the level of privileges allocated by the kernel.

There is no requirement by the kernel that thesuperuserbe known asroot. Some of those who advocate "secu-
rity by obscurity" have suggested that the symbolic name for user0 be changed. The practice is not to be recom-
mended as, after more that 40 years of being mapped to the symbolic nameroot, there are too many potential
hazards lurking in careless programmes and scripts to sensibly take the risk.

Good security should never rely on the ignorance of the would be intruder.

18.2. Managingroot access.

It is standard practice with many distributions, including Ubuntu, to set up systems administrators usingsudo.

This is to be applauded. Where there are multiple administrators of a system it is important that there is an effec-
tive audit trail of all users logins and it should always be possible to resolve these to an individual. "No generic
logins" needs to be an immutable rule.

There are occasions however when root access is necessary. In extremis when file systems are full and the sys-
tem appears to be grinding toward a halt only theroot user can get in and fix things. So there needs to be one
recognised superuser who does know theroot password!

In almost every large organisation I have seen this ends up with a demand that every administrator and technical
manager has theroot password. The password itself becomes generic and is applied across multiple hosts. There
is then effectively no control over root access at all, no meaningful audit trail, no one is responsible for proper
management of the system.

This is not a matter of who we pin the blame on when things go wrong but rather how we ensure that a systems
manager can put in place a coherent systems management policy and take responsibility for it’s oversight.

There has to be one individual who knows theroot password.

To protect the organisation against memory errors and abscence, the password should be written down, placed in
a sealed envelope and put in fireproof safe under the control of a manager who is senior to any administrator
likely to need it.

If the password is ever required, which should be a very rate event indeed, then a new password as soon as pos-
sible after the rescue operation a new password should be set and stored again in the same manner.

18.3. Thehoi palloi.

It is common practice to place certain categories of user within pre-determined ranges of numeric id. E.g. 1-199
is commonly reserved for well known system identities. These includebin (1), daemon(2), adm (3), andlp (4).

Ids in the range 200-1999 may also be reserved for special purposes, often for the accounts which are used for
running applications in daemon mode.

Accounts from 2000 are then used for users who maylogin to the system.

TheUbuntu distribution uses account id’s greater than 999 for ordinary user login accounts.

Page 94

City LinUX The Systems Admin’s Introduction to Linux (S18) User accounts

These restrictions are entirely arbitrary, they may be set by the software tools used to manage the accounts and
can be controlled with configuration files, command options and environment variables.

The location of configuration files does vary with the tool used and the distribution. Ubuntu uses
/usr/sbin/adduseras an interface touseradd and has a fileadduser.conf. Slackware, by default does not use
adduser.confbut does have a/etc/defaults/useradd. UnderSlackware, adduser is abashshell script interface
to useradd. CentOS has adduser as a symbolic link to/usr/sbin/adduser and the configuration file is
/etc/login.defs.

Every systems administrator should have a good understanding of the/etc/passwdfile and feel confident to be
able to edit it manually with a text editor.

sa101$ cat /etc/passwd
root:x:0:0::/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/log:/bin/false
lp:x:4:7:lp:/var/spool/lpd:/bin/false
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/:/bin/false
news:x:9:13:news:/usr/lib/news:/bin/false
uucp:x:10:14:uucp:/var/spool/uucppublic:/bin/false
operator:x:11:0:operator:/root:/bin/bash
games:x:12:100:games:/usr/games:/bin/false
ftp:x:14:50::/home/ftp:/bin/false
smmsp:x:25:25:smmsp:/var/spool/clientmqueue:/bin/false
mysql:x:27:27:MySQL:/var/lib/mysql:/bin/false
rpc:x:32:32:RPC portmap user:/:/bin/false
sshd:x:33:33:sshd:/:/bin/false
apache:x:80:80:User for Apache:/srv/httpd:/bin/false
haldaemon:x:82:82:User for HAL:/var/run/hald:/bin/false
pop:x:90:90:POP:/:/bin/false
nobody:x:99:99:nobody:/:/bin/false
minecraft:x:100:100:Minecraft :/u/minecraft:/bin/bash
fulford:x:1000:1000:Clifford W Fulford:/home/fulford:/bin/ash

Note that on most modern systems/etc/passwdis world readable but writable only byroot. The fields within
each record in the password file are delineated by colons (:).

Page 95

(S18) User accounts The Systems Admin’s Introduction to Linux City LinUX

There are seven fields for each record, these are

Field Name Contents Max
1 username 32charactersMust begin with a lower case character1, be followed

by any alphanumeric character, underscores and
hyphens, and may have$ as the last character.

2 password The value for this field is usuallyx2.
3 uid 4,294,967,296Zero or an unsigned integer value.3

4 gid 4,294,967,296Zero or an unsigned integer value.4

5 gecos A text string, usually the users real name.5

6 home The users home directory.6

7 shell The first program7 to be run after logging in.

18.4. Useraccount tools.

There are any number of tools available to manage the passwd and shadow password tables. On small systems
with a handful of users it may be practical to manage accounts through a GUI interfaces. Onlarge corporate or
educational sector installation with hundreds, thousands or even tens of thousands of users, often with large
influxes and departures of users, mastery of the command line interface is essential. Even on small scale systems
experienced administrator will find it easier and quicker to edit/etc/passwddirectly and then usepwconv to
generate the matching records in/etc/shadow. The work can then be verified withpwck.

18.5. Exercise.

Edit /etc/passwdto create accounts for the other trainees on the course.

Enter* in the password field.

Usepwconv to add the records to /etc/shadow .

Check your work withpwck.

Take a look at password field for the account in/etc/passwdand/etc/shadow.

Consider what other actions might still be needed to complete the account creation work.

Use the man pages to understand the required options touseradd and then use the command to create
another account. Examine the results usingtail /etc/passwd.

1 When using terminals, if the first character entered at login was not a lowercase alphabetic the system assumed
that the terminal had only upper case characters available and returned everything as upper case.The requirement
for usernames to begin with a lower case alphabetic character is still found in theman pages but tests appear to show
that any alphanumeric character may be used successfully on PC hardware although the practice should be avoided
to preserve integrity in large networked systems.

2 The early releases ofUnix held the encrypted password in the/etc/passwdtable. As this table has to be world
readable it was possible for would be crackers to take a copy and then use dictionary attacks to try to match the pass-
word. The encrypted password is now kept in/etc/shadowand is only readable by root.

3 On early UNIX systems the upper limit on user ids was commonly 32767. Later 16 bitUIDs gav ethe possibil-
ity of 65,536 user ids. More recently (from Linux kernel 2.4) 32 bit UIDs have become common giving
4,294,967,296 account ids. In a large corporate environment where the identity and age of all the kit may not be
known to thesysadminit would be wise to assume a common 16 bit maximum for theUID .

4 It was usual practice for many years to assign all users to a default primary group (often called "users"). Stan-
dard practice now days and much to be preferred is to create a new group with the same symbolic name and numeric
id as theUID , when any account is created. The new user then becomes the sole member of that group. This practice
avoids accidentally providing access to restricted files and processes through membership of large poorly monitored
user groups.

5 The GECOS field is named after the use at Bell labs where printing was done using printers with the General
Electric Comprehensive Operating System. It is a string of comma separated values, the interpretation of which is
application dependant. The currentfinger command inSlackware interprets the fields as "Name, Office, Office num-
ber, Home number". Some online documentation suggests a 5th field for other information may be available. Many
mail utilities will make use of the firstGECOS field.

6 The home directory is normally mapped to/home/<username>. If the field is blank or the directory does not
exist / will used as the home directory.

7 The last field is commonly known as the "Shell" field and for most ordinary login users it will indeed be a shell.
The field should contain a binary executable which will be the first program run after login processes. See examples
in thepasswdtable extract shown above.

The binary/sbin/nologincan used where accounts are active but it interactive login sessions are to be prevented.

Page 96

City LinUX The Systems Admin’s Introduction to Linux (S18) User accounts

Table of account management tools.

Command Use
useradd adda new user.
groupadd adda new user group.
usermod changepasswd table records.
adduser interface to useradd (Ubuntu).
addgroup interface to groupadd (Ubuntu).
passwd changea user’s password.
chfn changea user’s gecos field.
chsh changea user’s shell.
pwconv create shadow from passwd file and existing shadow.
pwck check(and correct) passwd file integrity.

Page 97

(S18) User accounts The Systems Admin’s Introduction to Linux City LinUX

Page 98

City LinUX The Systems Admin’s Introduction to Linux (S19) Host names

Section 19.

Hostname
resolution.

"The Domain Name Server (DNS) is the Achilles heel of the Web. The important thing is that it’s
managed responsibly."

Tim Berners Lee - Weaving the Web.

Page 99

(S19) Host names The Systems Admin’s Introduction to Linux City LinUX

19. Hostnames& h ostname resolution.

In order to communicate with a remote device across a TCP/IP network a host must be able to obtain the remote
device’s IP address. In TCP/IP version 4 the address consists of 4 binary octets.This is represented as four deci-
mal numbers separated by period (.) or dot.To make it easier to find and remember the IPv4 address we can
mapsymbolicnames to the IP address.

In UNIX and Linux this can be done with a simple text file/etc/hosts.

This file is created when the system is installed and at a minimum should contain the local host name and the
loopback address.

sa101$ cat /etc/hosts

#

hosts This file describes a number of hostname-to-address

mappings for the TCP/IP subsystem. It is mostly

used at boot time, when no name servers are running.

On s mall systems, this file can be used instead of a

" named" name server. Just add the names, addresses

and any aliases to this file...

#

By t he way, Arnt Gulbrandsen <agulbra@nvg.unit.no> says that 127.0.0.1

s hould NEVER be named with the name of the machine. It causes problems

f or some (stupid) programs, irc and reputedly talk. :ˆ)

#

For loopbacking.

This next entry is technically wrong, but good enough to get TCP/IP apps

to q uit complaining that they can’t verify the hostname on a loopback-only

Linux box.

127.0.0.1 caswallon-gw.fulford.net localhost

77.86.7.114 aog

82.165.10.17 qsi

87.106.52.215 dan

End of hosts.

A data entry is made for each host. The entry consists of a single line with a minimum of 2 fields separated by
white space.

Any text following the hash character (#) is ignored.

Host names must start with an alphabetic character. The final character must be alphanumeric. The other charac-
ters may be alphanumeric a minus (-) or a dot (.).

The symbolic name first enumerated in the record is thecanonicalname. Subsequent names arealiases.

Traditionally the domain name was not included in the/etc/hostsfile as this could be obtained elsewhere but it
is increasingly common practice to include the local, network information service (nis), or domain name system
(DNS) domain as part of thecanonicalname.

19.1. Goodpractice.

Thecanonicalname should be chosen to identify the host itself. This name should remain with the piece of kit
throughout it’s service life.

The aliases can then be used as functional names which can then be transferred to any other host as services
require.

Page 100

City LinUX The Systems Admin’s Introduction to Linux (S19) Host names

19.2. Example.

Suppose we have an host with the canonical name "caswallon" that is configured as a network file server provid-
ing the disk space for production users home directories.

172.22.44.101 caswallon nfs01 home

For reasons of space or following an office relocation we might want to move production users home directories
to another server.

172.22.44.102 ambrosius nfs02 home-prod

Ambrosius is to be upgraded so temporarily we move home-prod back to caswallon.

172.22.44.101 caswallon nfs01 home home-prod

The host table can be used as a quick fix to access hosts anywhere on the internet that for one reason or another
are not resolvable through other means or for which you need a shorteralias.

Be warned however that having multiple systems administrators modifying local hosts tables on non-exclusive
boxes can wreak havoc.

19.3. Exercise

Find the IPv4 address of each host in the training room and extend your local host table with the address and
canonical name of each host.

Set some aliases for each host perhaps starting by using the primary users name eg. john, colin etc.

Experiment with moving aliases around to other hosts. After each change check that the new name resolves cor-
rectly by usingping andssh.

19.4. DNSResolver

The internet domain name system (DNS) resolver is implemented in set of C library routines.

Configuration is simple. By editing the configuration file/etc/resolv.confwe can set the DNS servers to be used
and the order in which domains are searched.

sa101$ sudo vi /etc/resolv.conf
domain fulford.net
search fulford.net citylinux.com westbridgford.info flare-support.com
nameserver 10.0.0.4

The limit on the search path for domains is currently 255 characters and a total of 6 domains.

If no domain is set, the resolver obtainsthe local fully qualified domain name and sets the search path by
removing the characters up to and including the first dot (.).

Testing the domainname set does get confusing. There are 5 well known commands

sa101$ hostname -d
sa101$ domainname
sa101$ nisdomainname
sa101$ ypdomainname
sa101$ dnsdomainame

but all of them are now usually symbolic links tohostname.

The commandhostname -d returns thedns domainname if set, as doesdnsdomainnameThe remaining 3
return the nis or yellow pages domainname if set.There are however 2 other files that come into play
/etc/host.confand/etc/nsswitch.conf

19.5. Examples

sa101$ sudo bash
sa101$ cat /etc/resolv.conf
domain citylinux.com
nameserver 10.0.0.4
search fulford.net citylinux.com westbridgford.info flare-support.com

Page 101

(S19) Host names The Systems Admin’s Introduction to Linux City LinUX

sa101$ cat /etc/host.conf
order bind, hosts
multi on

sa101$ grep hosts /etc/nsswitch.conf
hosts: dns files

The file/etc/hosts.confis specific to the resolver whereas/etc/nsswitch.confinforms various functions in the C
library. This follows a method created by Sun MicroSystems in Solaris 2.

Before configuring and testing hostname resolution stop the cache daemonnscd.

19.6. NIS/ NIS+

The Network Information Service (nis), was created by Sun MicroSystems as a directory service protocol to dis-
tribute configuration data across a network. The service allows any host attached to a subnet to resolve host-
names, look up ip addresses, check user names and passwords and netgroup membership by makingrpc calls to
the nis server. (The commands commence with yp e.g.yppasswd) as initially the service was calledyel-
low pages.

The systemhad security vulnerabilities and did not scale for very, very large installations as the complete table
was returned to the calling host.

Sun developed a replacement serviceNIS+ which addressed these problems but at a cost of much greater com-
plexity in configuration and management. As a consequenceNIS+ has never been widely adopted.

19.7. LDAP and Kerberos

Kerberos was developed by the Massachusetts Institute of technology to provide a mechanism for strong
authentication and authorisation of applications in a networked client server environment.

The protocol was adopted and then changed by Microsoft.

19.8. Exercises.

Install the rpc port mapper.

Find a nis installation and configuration guide and install nis for passwords, hosts and mail aliases.

19.9. DomainName System.

DNS server configuration is available as a separate training module. Over the years as functionality and security
have been added configuration has become something of an art.

Configuration is normally done through/etc/named.conf. The source files for the host tables are usually kept in
/var/named

In Ubuntu the default configuration file as described in the Ubuntu forums is/etc/bind/named.conf.localand
some information has been moved to /etc/bind/named.conf.options.

Page 102

City LinUX The Systems Admin’s Introduction to Linux (S20) File sharing

Section 20.
File sharing.

"A stateless protocol is one where each transaction is handled separately; the server doesn’t need to
keep information about what clients have done previously. Being stateless allows an NFS server to
reboot while clients are making requests and, once it returns to service, continue serving files to
clients as if nothing had happened."

Zwicky, Cooper and Chapman - building Internet Firewalls, 2nd Edition.

Page 103

(S20)File sharing The Systems Admin’s Introduction to Linux City LinUX

20. Filesharing in Linux.

The two most common tools for sharing files between networked hosts (Windows, Linux, UNIX, Apple and oth-
ers) areNFS andSamba(CIFS/SMB).

20.1. Network File System NFS.

NFS, the Network File System was originally developed by Sun MicroSystems in 1984.

The current version ofNFS is v4. Version 4 is the first to be developed by the Internet Engineering Task Force
(INETF) after the handover from Sun MicroSystems.NFS v4 is much influenced by the Andrew Files System
(AFS). It is stateful and includes mandatory security features. (The originalNFS was designed to be "stateless"
and was implemented entirely in UDP).

In order to run NFS we need remote procedure calls (RPC) and theNFS kernel server (nfs-kernel-server).

In order to use NFS services we need the nfs client (nfs-common).

Files can be directly exported from the command line but more usually the exports are set up in/etc/exports
The command

exportfs -a

will export all the configured files and can be run at boot time.

Issuing the command without any flags will return a list of the currently exported files together with the access
controls.

20.2. Exercise.

Install both theNFS server and client on your host.

Create a directory/export/homeand transfer your home directory to this location.

Do anNFS mount of your own directory back to/home/<username>

Try mounting yourcolleagues home directories to your local host.

Read the section on using the automounter (autofs), and configure theautomounter using/etc/auto.masterand
/etc/auto.hometo automount your own and your colleagues home directories.

Read the manual pages onNFS security settings, limiting host access, exporting read only, root access etc. Mod-
ify your exports to reflect your understanding of these settings.

20.3. Sharingwith Windows - Using Samba.

Samba is a free open source implementation of the Server Message Block (SMB), or Common Internet File Sys-
tem (CIFS), that is used by Microsoft Windows hosts.

Using theSambaserver Linux files and printers can be made available to Windows desktop clients. TheSamba
client tools also make it possible to read and write Microsoft shares.

Samba can provide authentication services forwindows hosts or can be configured to use Windows authentica-
tion servers.

20.4. Exercise.

Set upSambaon your local host.

Examine the file/etc/samba/smb.confand remove the # characters that preceded thehomesstanza.

Use thesmbclient to access your own home directory and those of colleagues on other hosts in the training lab.

Page 104

City LinUX The Systems Admin’s Introduction to Linux (S21) Scheduling work - cron

Section 21.
Scheduling work with
cron.
21. Schedulingwork with cron.

"Note that if I can get you to "su and say" something just by asking, you have a very serious secu-
rity problem on your system and you should look into it."

Paul Vixie - vixie-cron 3.0.1 installation notes.

Page 105

(S21) Scheduling work - cron The Systems Admin’s Introduction to Linux City LinUX

Scheduling routine tasks is a very simple using Linux tools common to all releases.

Process which run continuously in the background are calleddaemonsor demons.They commonly enjoy a let-
ter ’d’ appended to the basic name. This is true of thecron daemon,crond and its sibling theat daemon (atd),

The cron daemon runs in the background and executes commands or shell scripts to a schedule set by the user in
a crontable orcrontab.

The crontablesare kept in/var/spool/cron/crontabs. Tables are stored with the user’s login name.

sa101$ sudo bash
sa101$ cd /var/spool/cron/crontabs
sa101$ ls -l
total 4
-rw------- 1 root root 0 Mar 9 2012 adm
-rw------- 1 root fulford 0 Aug 11 12:27 fulford
-rw------- 1 root root 1545 Dec 29 16:27 root

Direct access to the crontabs is normally restricted to root.For ordinary mortals there is thecrontab utility
which uses the set-uid facility in Linux to change the effective UID when installing a new or modifiedcrontab.
With the-l optioncrontab will list the current content of the userscrontab, with the-e flag the crontab will be
opened using the users preferred editor as set in theEDITOR or VISUAL environment variables. (If neither are
set then the default editor is used, in most releases this will bevi).

sa101$ sudo bash
sa101$ crontab -e
reading /var/spool/cron/crontab.OKnVIu
Read /var/spool/cron/crontab.OKnVIu, 29 lines, 1545 chars

.......
wrote /var/spool/cron/crontab.OKnVIu, 29 lines, 1546 chars
sa101$ ls -l /var/spool/cron/crontabs
total 8
-rw------- 1 root root 0 Mar 9 2012 adm
-rw-r--r-- 1 root root 5 J an 4 02:57 cron.update
-rw------- 1 root fulford 0 Aug 11 12:27 fulford
-rw------- 1 root root 1545 Jan 4 02:57 root
sa101$ cat /var/spool/cron/crontabs/cron.update
root

Note thatcron.updatefile that is now in /var/spool/cron/crontab.

The old way of managing crontabs was to take a copy of the crontab file, edit it and copy it back to the spool
directory. A SIGHUP (-1) signal would then be sent to thecrond process which would cause it to re-read the
crontabs. Laterversions daemon would re-read any crontab files that had been recently modified automatically.

When usingcrontab with -e a temporary file is created for the duration of the edit.On exiting from the editor
the crontab is written back to the spool directory and the user name is added tocron.update. This file is
checked bycrond ev ery minute and the listedcrontabsare read or re-reread.

The way crond andcrontab works differs with the distribution. BothCentOS andUbuntu for instance use
versions derived from the Paul Vixie cron programs, but CentOS’s version is maintained by Marcela Maslanova
at RedHat, whereas theUbuntu offering credits only Paul Vixie but hasDebian specific modifications to allow
better handling of scriptedcrontab file changes.Slackwareuses the simpler and to my mind more elegant Dil-
lon’s lightweight cron daemon, (dcron), currently maintained by Jim Pryor. Other versions are also available.

21.1. Thecrontab.

Most cron daemons honour the 6 fields found in Dennis Ritchie’s version of cron that was available for
UNIX v7. The Vixie crontab has a 7th field available for the superuser to specify a user id that is to be used
when running the command.

Page 106

City LinUX The Systems Admin’s Introduction to Linux (S21) Scheduling work - cron

Field Description Values
1 minutes 0-9,*
2 hour 0-23
3 day of month 1-31
4 month 1-12
5 day of week 0-7
6 command text string

1. Theminutes field is the number of minutes past each hour. Use an asterisk (*) to indicate that the event
should be scheduled every minute. A range of minutes may be indicated with the hyphen e.g. 1-30. A list of
minutes past the hour may also be used e.g. 15,25-35,45 forward slash (/) may be used to indicate step val-
ues through the hour e.g. 0-50/10 would schedule the event every 10 minutes.

2. Thehour field specifies the hour the job is to be run using the 24 hour clock. Again the asterisk (*) of hours,
with or without steps, are also available e.g. 8,9-17/2 would schedule a task at 8 and then every 2 hours from
9am until 5pm.

3. Dayof month allows specific days of the month, a comma separated list of days, an asterisk (*) for all, or a
range of days with or without steps e.g. 1,5,7-31/2 for the 1st and 5th of the month followed by every second
day until the end of the month.

4. Themonth number, again with the possibility of all, ranges and steps as above e.g. 1,3,5,6-9 schedules the
job for January, March and May and then each month from June to September.

5. Theday of the week looks odd, 0-7, that’s an eight day week surely? This is because all modern cron dae-
mons understand the old assumption of 0-6 with 0 meaning Sunday and the more contemporary 1-7 with 7
being Sunday. Again we can specify (*) for all or a range without or without steps e.g. 0,2,5 (Sunday, Tues-
day and Friday).

6. Thecommand may be a single command, list or pipeline. The command can be scripted within the field.
Commonly the command is the name of script. Do bear in mind that the PATH available at run time is fairly
minimalist (the Vixie cron used onUbuntu does allow equates within the crontab to specify the PATH), so it
safer to specify the full path of your script.

Access tocrontab is controlled in Vixie cron through/etc/cron.allow and /etc/cron.deny. In Dillon’s light-
weight crontab access is expected to be controlled simply by requiring membership of the same group as that
thecrontab binary. I note however that inSlackwareat least the default installation sets the binary group id to
root but has the execute bit set for all users. If it desired to control access to cron jobs, as it may well be in a
large scale academic environment, I would recommend that that a new group "cron" or "cronuser" is created and
that the group id and execute permissions on the binary are modified accordingly. Membership of "cron" can
then be allocated by seniority or upon request.Alternatively membership can be granted by default and then
removed if the facility is being abused.

21.2. Exercises.

Read thecrond andcrontab manual pages.

Set up a cron job to check the disk usage on your host machine every every 15 minutes and email you if any file
system is more than 60% full. Experiment with the parameters set in your script and for test purposes perhaps
invert the alert so that you are emailed if any file system is less than 60% full.

Read the manual page forat and then set up anat job to check the CPU Osage in 10 minutes time and email you
the results.

Set up a cron job that will run on the 2nd Monday of each month.

Setup a cron job to produce a report annually, starting in an hours time.

Page 107

(S21) Scheduling work - cron The Systems Admin’s Introduction to Linux City LinUX

Page 108

City LinUX The Systems Admin’s Introduction to Linux (S22) Change control

Section 22.
Change control.

"I’m an egotistical bastard, and I name all my projects after myself. First ’Linux’, now ’git’."

Linus Torvald.

Page 109

(S22) Change control The Systems Admin’s Introduction to Linux City LinUX

22. Changecontrol.

Whenever we make changes to configuration files or systems administration scripts we need to keep an accurate
record of what we did, when and why. If the change doesn’t work out or has an unexpected impact somewhere
else in the system, we need to be able to roll back to the previous settings.

There are many tools withinLinux which allow us to do this with a minimum of fuss and bureaucracy. The old
Source Code Control System orsccswhich was developed at Bell Labs and was available in System V derived
distributions provided this functionality very simply but remained proprietary until released under the Open
Solaris project. I understand thatGNU’s csscis available as a replacement forsccs.

Thesccscommand set is part of the Single Unix Specification.

The Revision Control System (rcs) was developed at Purdue University and first released in 1982.rcs is avail-
able in allLinux distributions that I know of and if anything is easier to use thansccs.

I don’t like the format of the headers thatrcs produces but I can live with it to have a tool that can remove all
those backup copies with extraordinary and uninformative names that litter many corporate systems. e.g.

sa101$ cd /etc/mail

sa101$ ls

Makefile diffs relay-domains sendmail.old

Makefile.new domaintable sendmail+dkim-masq.cf spamassassin

access domaintable.db sendmail-dkim.cf statistics

access.db genericstable sendmail.bill submit.cf

access˜ genericstable.db sendmail.cf submit.cf.new

aliases helpfile sendmail.cf.121001 submit.cf1201003

aliases.db local-host-names sendmail.cf.dkim trusted-users

aliases.new mailertable sendmail.cf.new virtusertable

aliases˜ mailertable.db sendmail.cf1201003 virtusertable.db

current.cf masqdomains sendmail.keepthisone

We can create a backup copy of our target file instantly withci, rcs’s check in command.

sa101$ cd /etc/mail

sa101$ sudo ci sendmail.cf

sendmail.cf,v <-- sendmail.cf

enter description, terminated with single ’.’ or end of file:

NOTE: This is NOT the log message!

>> .

initial revision: 1.1

done

sa101$ ls

Makefile diffs relay-domains sendmail.old

Makefile.new domaintable sendmail+dkim-masq.cf spamassassin

access domaintable.db sendmail-dkim.cf statistics

access.db genericstable sendmail.bill submit.cf

access˜ genericstable.db sendmail.cf,v submit.cf.new

aliases helpfile sendmail.cf.121001 submit.cf1201003

aliases.db local-host-names sendmail.cf.dkim trusted-users

aliases.new mailertable sendmail.cf.new virtusertable

aliases˜ mailertable.db sendmail.cf1201003 virtusertable.db

current.cf masqdomains sendmail.keepthisone

The filesendmail,vhas been created to keep track of the changes and adds to the clutter. If we created anRCS
directory first the record files would be automatically stored in that subdirectory.

Note that we have lost the working copy of sendmail.cf. To get it back we need to issue the commandco
(check out) which will extract and restore the last saved version. If we had set a lock withci -l, the working copy
would have remained available and other users would be prevented from checking out a copy.

All This might be o.k. if the sys admin is a one man band but it would be far preferable if this process were man-
aged well away from our production environment.

Page 110

City LinUX The Systems Admin’s Introduction to Linux (S22) Change control

In a networked environment I would always seek to have a host dedicated to the role of managing the other
boxes be they production, development or test machines.

Replicate the directory tree of the working hosts from/usr/local/src, make our changes there and then distribute
them as appropriate, to the test and production environments.

Even if we’re only managing a single host I would still contend that this is a good method of working that can
save hours of work and heartache in the long run.

bash: cd: /usr/local/src/common/etc/mail: No such file or directory
sa101$ mkdir /usr/local/src/s common/etc/mail
sa101$ cd /usr/local/src/common/etc/mail
sa101$ cp /etc/mail/sendmail.cf .
sa101$ ci -l sendmail.cf
sendmail.cf,v <-- sendmail.cf
enter description, terminated with single ’.’ or end of file:
NOTE: This is NOT the log message!
>> .
initial revision: 1.1
done
sa101$ vi sendmail.cf
skipping 18 old session files
reading sendmail.cf

........
wrote sendmail.cf, 1869 lines, 59668 chars
sa101$ ci -l
sendmail.cf,v <-- sendmail.cf
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single ’.’ or end of file:
>> .
done

Once satisfied that we have a working revision the updated copy can then be distributed to the test or production
environment. This can be achieved with a simple copy or if we expect more frequent or complex updates, with
the assistance of amakefile.

22.1. RCSheaders.

So that we know which version of a file we are using in our live environment the RCS process can update head-
ers contained in the target file. In rcs identification strings are created by placing marker strings bracketed by
the $ character. The marker string 1.2$Id:43rcs.ms,v on checkout will be replaced by a string with the format
$Id: filename revision date time author state$

In addition to the 1.2$Id:43rcs.ms,v string it is useful to include the same data in a format more readily accessi-
ble to less experienced users e.g.

sa101$ cd /usr/local/src/common

sa101$ ls

etc header usr var

sa101$ cat header

#$Id: 43rcs.ms,v 1.2 2013/09/12 13:37:07 fulford Exp fulford $

#$RCSfile: 43rcs.ms,v $

#$Source: /usr/local/src/caswallon-gw/usr/local/web/lts/linux/sa101/RCS/43rcs.ms,v $

#Revision: 1.2

#$Date: 2013/09/12 13:37:07 $

#$Author: fulford $

Copyright (c) 2013 C W Fulford. All rights reserved.

For assistance call 0709 229 5385 or e-mail fulford@fulford.net

###

If we keepheader in the stem of our source tree it can then be easily prepended to any script or configuration
file we wish to use.

Page 111

(S22) Change control The Systems Admin’s Introduction to Linux City LinUX

sa101$ cd /usr/local/src/common/etc

sa101$ cp ../header auto.home

sa101$ vi auto.home

reading auto.home

.......

sa101$ ci -l auto.home

RCS/auto.home,v <-- auto.home

new revision: 1.2; previous revision: 1.1

enter log message, terminated with single ’.’ or end of file:

>> .

done

sa101$ cat auto.home

#$Id: 43rcs.ms,v 1.2 2013/09/12 13:37:07 fulford Exp fulford $

#$RCSfile: 43rcs.ms,v $

#$Source: /usr/local/src/caswallon-gw/usr/local/web/lts/linux/sa101/RCS/43rcs.ms,v $

#Revision: 1.2

#$Date: 2013/09/12 13:37:07 $

#$Author: fulford $

Copyright (c) 2013 C W Fulford. All rights reserved.

For assistance call 0709 229 5385 or e-mail fulford@fulford.net

###

* : /u/&

It’s not as neat assccs. I would like to be able to get rid of the keywords and the$ characters and have the target
file name rather than the delta repository as one of the identifiers, but it does the job.

22.2. Alternatives.

Do a search on the internet and you will find many readily available alternatives which in many respects are far
superior to RCS. Systems like Concurrent Version Control (cvs), Subversion (svn), BitKeeper and Linus Tor-
vald’s git.

The problem from a systems administration view point is that these systems provide concurrent access, central
repositories and automatic merging, all highly desirable in a substantial development project but features which
should strike horror to heart of the sysadmin.

22.3. Exercises.

Check the man pages forrcsintro, rcs, ci, andco.

Use a search engine to find an introduction to subversion and the concurrent version system.

Find the objectives enumerated by Linus Torvald when designinggit.

Page 112

City Linux The Systems Admin’s Introduction to Linux (S23) Internet mail

Section 23.
Internet mail .

"Be liberal in what you accept, and conservative in what you send"

Jon Postel - RFC 1122.

Page 113

(S23) Internet mail The Systems Admin’s Introduction to Linux City Linux

23. Internet mail.

Mail was a available on Unix v1 in 1971 for sending messages on multi-user systems.Beginning with unix to
unix copy (uucp) and hand crafted paths to remote hosts, Unix and Linux servers have been to date, the predom-
inant mail hubs throughout the life of the internet.

The user interface for any mail system is called the Mail User Agent (MUA). Theprinciple MUAs have been
Mail (BSD) andmailx (System V). The two hav ebeen conflated at various times and (mail) has also been
used), each with features to replicate and extend the functionality of the other.

As e-mail has unfortunately become the dominant method for for file transfer, the absence of a mail attachment
mechanism formail, mailx andMail appeared to sound the death knell of these utilities. Dean Jones’email
utility seemed a better bet supporting as it did attachments, remote mail servers andgpg encryption. Attach-
ments are now available formailx to whichmail andMail are often symbolic links.

Ubuntu appears not to have email available as a package but it can be obtained directly from Clearcode or I
think, from Sourceforge.

Other MUAs includealpine from Mark Crispin at Washington University, elm which dominated at one time but
seems to have slipped below the radar andmutt which seems to enjoy continued popularity and I believe is the
default MUA on Ubuntu.

23.1. Mail Access Protocols.

There are 3 major access protocols for retrieving mail from a mail server, each with a more secure encrypted
version available.

23.1.1. Post Office Protocol.

The Post Office Protocol (POP) first specified in 1984, continues to enjoy success and very large scale usage.
The current version and that found on most Ubuntu installations, is version 3POP3.

Account holders can download mail from remote mail servers such as Google Mail and Yahoo usingPOP3.
Once a message is downloaded the server copy is normally deleted, although there are options withinPOP to
preserve the copy on the server.

POP3belongs to the dial up era of internet communications when connections to the Internet Service Provider
(ISP) were dropped once mail had been retrieved.

POP3uses the well known port 110. Encrypted communications may be supported using Transport Layer Secu-
rity (TLS), or the Secure Sockets Layer (SSL) on well known TCP port 995.

23.1.2. Internet Message Access Protocol.

The Internet Message Access Protocol (formerly the Internet Mail Access Protocolwas original developed by
Mark Crispin of Washington University. The current version isIMAP4 . More complex thanPOP, IMAP pre-
serves messages on the server and allows access from multiple hosts which can be concurrent.

IMAP uses well known port 143 for basic communications and well known port 993 forIMAP over the Secure
Sockets Layer (SSL).

Sent messages are also copied to the mail server byIMAP clients.

23.1.3. HTTP.

Although all major mail server applications supportIMAP4 andPOP3 the user is nowadays as likely as not to
use a web browser to communicate with the mail server over Hyper Text Transfer Protocol (HTTP). Theweb
server application may be usingIMAP to access the mail store.

23.1.4. Otherprotocols.

There are other mail access protocols most notably Microsoft has it’s own proprietary access method for
Exchange servers.

23.2. TheMail Transfer Agent.

23.2.1. Sendmail.

The dominant Mail Transfer Agent (MTA) on the internet issendmail. The configuration ofsendmail is a huge
topic in its own right. The enormous number of options and the peculiar syntax of it’s configuration files, can be

Page 114

City Linux The Systems Admin’s Introduction to Linux (S23) Internet mail

intimidating but robust and secure configurations can be set up quite easily with the supplied configuration files.
If you run a large mail hub it can be pretty much guaranteed that whatever feature you want to employ it will be
available insendmail.

If a suitable MTA is not available or lacks the required functionality for an email script,sendmail can be
employed in the role of a command line MUA.

I l ike sendmail. I’v e had 30 years to learn some of complexities and although still by no means an expert I find
there is little it can throw at me that I don’t understand and can’t fix. Not so some of the other MTAs with which
I am now reluctantly forced to engage.

23.2.2. Postfix.

Wietse Venema’spostfix is the one I’m now most frequently called upon to deal with because it is the default
MTA in CentOS. Most often with my clients it is combined withplesk and bothvirtual domainsandvirtual
usersare also involved.

Even doing simple things like checking the mail logs becomes a pain as/var/log/maillogis zero bytes and there
seems to be no rhyme or reason to the alternative locations. Whenyou discover thatpostfix consists of umpteen
separate programs including not only the guessable, like postalias, postmap, postscreenet al. but also the pro-
saic and to my mind, frustrating,local, virtual , pickup, bounce, discard and on and on and on. All these intrin-
sically useful command names hijacked in the service of one email system! Ok I know, I know, "do one thing,
and do it well" but we can take this to extremes, how many gadgets can you tolerate cleaning and storing before
you accept the inevitability of the "food processor".

When you discover postconfyou think maybe your troubles are over but of coursepostconfwont tell you where
the log files are. For that you need thesyslogd.confor rsyslogd.confin CentOS. This brings you sharply back
to the real world of UNIX systems administration only to then discover that Wietse has provided apostfix spe-
cific command line loggerpostlog!

Back with ourmaillog file, its aplesk issue and nothing to do with Wietse orpostfix but there’s still a dilemma.
Having discovered that logging is going to "/usr/local/psa/var/log/maillog", do you change the location back to
something more sensible like, well /var/log/maillog for instance (and risk breakingplesk ?) ordo you stick to
the out of box configuration, or perhaps create a symbolic link so that you can find it either way?

I’ve opted to leave it where I found it. This is because I find it really hard to remember wherepostfix andplesk
put things but the only way I’m going to learn is by having to rediscover them again and again.

One thing you do need to know if your moving topostfix from sendmail , is that postfix uses thenobodyiden-
tity to deliver mail to root’s mailbox. Thus when when you try to hand off to other utilities like procmail, noth-
ing seems to work for theroot user. The way around this is to usealiasesto redirectroot’s email to what Wietse
regards as a"real user", and configure yourprocmail rules for that account.

It took me a full day of banging my head against a brick wall before that sank in although in fairness it is docu-
mented everywhere.

In reality of course your probably going to want to use not a "real user" at all, because non of the "real users" are
appropriate. If I aliasroot to my ID as the systems administrator for instance and set up all sorts of rules that
make sure the right person on a client’s staff get to see to the messages that they need to deal with, while leaving
the real problems for me, what happens when my successor comes along and re aliasesroot to the "sysops"
account. Well all those carefully crafted rules are lost, of course. So better to use abogususer like rootmail, an
account that can be carefully annotated to explain what’s going on. An account the purpose of which is intu-
itively obvious, mostly, and which can be left intact from generation to generation.

23.2.3. Exercise

Find the common locations for the mail aliases file and the associated database files. Find the configuration file
that determines which of these files are actually used. Find 2 or more commands that can be used to rebuild the
aliases database.

23.2.4. Exim

The defaultMTA in Ubuntu is exim see https://help.ubuntu.com/8.04/installation-guide/hppa/mail-setup.html

Page 115

(S23) Internet mail The Systems Admin’s Introduction to Linux City Linux

23.3. TheMail Deli very Agent

The mail delivery agent is used by the last MTA in the chain to deliver messages to the correct mail boxes. In the
UNIX world the default delivery agent was for many yearsmail.

Often a sophisticated tool for auto-processing mail at the point of delivery, procmail, was configured by the
recipient to perform tasks such as sorting messages into different mail folders, sending automatic replies and
consigning junk mail to the bit bucket.

Procmail could however be used as the MDA within MTA programs like sendmail and this is now the normal
practice in most Linux distributions.

23.4. Mail utilities.

Utility Pur pose
countmail obnoxiousreports on the number of messages you have.
fetchmail fetchmail from POP, IMAP, ETRN or ODMR server.
formail mail (re)formater.
fastmail quickbatchmail interface to a single address.
messages amore polite mail counter.
mutt acurses based MUA.
vacation anemail autoresponder.

A further City Linux training module is available on email configuration.

23.5. Exercise

Configure your workstation to be able to send internet mail.

Page 116

City LinUX The Systems Admin’s Introduction to Linux (S24) Web servers

Section 24.
Web servers.

"I’ d say there was a fair amount of skepticism at the time about whether the Internet held any prom-
ise. And of course I felt that it did."

Jim Clark - founder of Netscape.

Page 117

(S24) Web servers TheSystems Admin’s Introduction to Linux City LinUX

24. Internet web servers.

UNIX and Linux provide the vast majority of services available on the internet. In the field of web servers
UNIX/Linux platforms with the Apache web server, dominate cyberspace.

The statistics produced by Netcraft in spring 2012 show thatApachecontinues to be preeminent.

Developer April 2012 Percent May 2012 Percent Change
Apache 443,102,561 65.46% 425,631,721 64.20% -1.26
Microsoft 92,488,751 13.66% 92,406,480 13.94% 0.28
nginx 69,869,916 10.32% 70,764,248 10.67% 0.35
Google 22,039,901 3.26% 21,264,616 3.21% -0.05

The above table is for the top servers across all domains. The figures for the total active sites across all domains
show a similar Apachedominance at over 67%. Interestingly on this measure since November 2011Nginx, an
alternative open source web server knocksMicrosoft into 3rd place but Apachecontinues to have 5 times as
many sites as it’s nearest rival.

The Ubuntu Apache installation Guide is at https://help.ubuntu.com/10.04/serverguide/httpd.html

24.1. Apache installation.

Download and install with

apt-get install apache2

24.2. Exercise.

Use the Ubuntu guide to configure 2 virtual servers on your host. Ensure that there are sufficient differences in
the opening page to make it immediately apparent that a different (virtual) server has been reached.

Page 118

City LinUX The Systems Admin’s Introduction to Linux (S25) Misc. applications

Section 25.

Miscellaneous
Applications.

"The Internet is not just one thing, it’s a collection of things - of numerous communications net-
works that all speak the same digital language."

Jim Clark - founder of Netscape.

Page 119

(S25) Misc. applications The Systems Admin’s Introduction to Linux Misc. applications

25. SomeLinux applications.

For almost every application we can think of there is a Open Source alternative. For many major applications
and protocols the UNIX / Linux incarnation came first. Where an MS Windows package is absolutely required
and there is no Linux version available, there isWINE.

25.1. Wine Is Not an Emulator.

Wine uses re-implementations of Windows DLLs to provide a compatibility layer that allows Windows applica-
tions to run on Linux. Wine provides more extensive backward compatibility for old windows applications
(from Windows 3.0) than the real thing in compatibility mode.

25.2. Exercise.

Download and installWine.

Download, install and test a free windows application to run underWine.

25.3. LibreOffice.

LibreOffice split from OpenOffice in 2010 when many in the Open Source community became frustrated with
the lack of clear open source development plan by its new owners Oracle.

LibreOffice is an integrated office suite that is available for Windows, Mac and UNIX / Linux platforms. Libre-
Office can read and write to files in a large range of formats.

25.4. Exercise

Download, install and try LibreOffice.

25.5. Issue,bug and ticket trackers.

There are a large number of open source issue trackers available. Several of them were developed alongside
other software initiatives.

Bugzilla is perhaps the best known and is used and maintained by Mozilla (Firefox), Apache and the Linux ker-
nel development team.

My favourite in recent years has been the award winningRoundup.

Roundup can be used on the web, by email and on the command line. It is relatively easy to install and config-
ure. Extensions to the basic package are available and it is relatively easy to enhance with a very little under-
standing of PHP.

25.6. Exercises.

Use http://www.freshmeat.net to research open source applications for bug tracking.

Install and configureRoundup on your Linux host.

Page 120

City LinUX The Systems Admin’s Introduction to Linux (S26) Further Linux Courses

Section 26.
Further Linux
courses.

"The more you learn, the more you know, the more you know, the more you forget, the more you
forget the less you know. So why learn?"

Anonymous.

Page 121

(S26) Further Linux courses The Systems Admin’s Introduction to Linux City LinUX

26. Further courses.

26.1. More advanced shell scripts.

More advanced shell scripting for systems administration.

Setting up log rotation.

Scripting across multiple hosts.

Using the pattern scanning and text processing languageawk.

Working with the stream editorsed .

Setting up local and remote backups.

Using wrapper scripts.

26.2. SystemsAdmin Essentials

An introduction to the system admins essential toolkit for running networked systems including:

Domain Name Services (DNS). Configurationof local and internet domains including split horizon con-
figurations.

Dynamic Host Configuration (DHCP) and (BOOTP). How to configure a fully featuredDHCP server.

Syslogconfiguration. Keeping an eye on the logs. Scanning and processing.

Setting up and using the network time protocol.NTP.

Setting up the print server and usingCUPS(common unix print service).

26.3. Performance monitoring and management.

Process control, background jobs, process prioritiesniceandrenice.

Identifying and dealing with process hogspsandtop.

Scripted monitoring of rogue processes.

Basic tools and reporting

vmstat

mpstat

nfsstat

netstat

sar (system activity reporting)

pacc(process accounting)

ping, traceroute andtcpdump.

26.4. Securitybasics.

An introduction to host based and network security for Linux using commonly available open source tools.

File access controls.

An introduction to theiptablesfirewall.

Secure communications with Secure shell (ssh, scp, sftp).

Combiningsshwith other communication protocols. Operating remote scripting withssh.

Beyond/etc/shadow. Setting upkerberos authentication and authorisation.

Working with SAMBA , the Windows file sharing and authentication tool.

Integrating with Windows Active Directory (AD)

Intrusion detection.

Security scanning tools.

Mapping the network withnmap.

Working with X windows.

Page 122

City LinUX The Systems Admin’s Introduction to Linux (S26) Further Linux Courses

26.5. Typesetting with nroff, groff , pic and table.

Thegroff andTEX device independent typesetting and publishing tools provide fast, flexible lightweight docu-
ment processing with minimal file storage requirements.

Whether manually entering at the keyboard or generating reports automatically by combining text processing
tools with document publishing, these are powerful tools the Linux systems administrator should understand.

nroff and the man macros.

groff/troff

the PIC preprocessor (drawing).

Using tables and tbl preprocessor.

Processing output streams with sed and awk to prepare routine reports in groff.

The TEX alternative.

26.6. Email

Understanding the simple mail transfer protocolsSMTP andESMTP.

The Mail User Agent (MUA), Mail Delivery Agent (MDA) and Mail Transport Agent. What they are and
what they do.

Setting up a host to receive and send internet mail.

Smart hosts and mail hubs.

Managing aliases

Automating multi drop mail boxes, automatic replies and filtering usingprocmail.

Setting upVacation, the Out of Office Assistant.

Filtering spam withSpamAssassin.

Domain Keys Identified Mail. (DKIM).

Delivery Service Notification (DSN).

Digital Signatures.

Message confidentiality.

Data Integrity.

Strong Originator Authentication?

Non-repudiation.

Setting up mail servers withPOP, IMAP, MAPI . Access through web pages.

Generating mail stats.

Page 123

(S26) Further Linux courses The Systems Admin’s Introduction to Linux City LinUX

Page 124

